BNU-LSVED 2.0: Spontaneous multimodal student affect database with multi-dimensional labels

情感(语言学) 心理学 多样性(控制论) 手势 唤醒 计算机科学 数据库 认知心理学 人工智能 社会心理学 沟通
作者
Qinglan Wei,Bo Sun,Jun He,Lejun Yu
出处
期刊:Signal Processing-image Communication [Elsevier]
卷期号:59: 168-181 被引量:26
标识
DOI:10.1016/j.image.2017.08.012
摘要

In college classrooms, large quantities of digital-media data showing students’ affective behaviors are continuously captured by cameras on a daily basis. To provide a bench mark for affect recognition using these big data collections, in this paper we propose the first large-scale spontaneous and multimodal student affect database. All videos in our database were selected from daily big data recordings. The recruited subjects extracted one-person image sequences of their own affective behaviors, and then they made affect annotations under standard rules set beforehand. Ultimately, we have collected 2117 image sequences with 11 types of students’ affective behaviors in a variety of classes. The Beijing Normal University Large-scale Spontaneous Visual Expression Database version 2.0 (BNU-LSVED2.0) is an extension database of our previous BNU-LSVED1.0 and it has a number of new characteristics. The nonverbal behaviors and emotions in the new version database are more spontaneous since all image sequences are from the recording videos recorded in actual classes, rather than of behaviors stimulated by induction videos. Moreover, it includes a greater variety of affective behaviors, from which can be inferred students’ learning status during classes; these behaviors include facial expressions, eye movements, head postures, body movements, and gestures. In addition, instead of providing only categorical emotion labels, the new version also provides affective behavior labels and multi-dimensional Pleasure–Arousal–Dominance (PAD) labels that have been assigned to the image sequences. Both the detailed subjective descriptions and the statistical analyses of the self-annotation results demonstrate the reliability and the effectiveness of the multi-dimensional labels in the database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权翼发布了新的文献求助10
刚刚
月昔完成签到,获得积分10
刚刚
iiiorange发布了新的文献求助10
刚刚
Lucas应助雪山飞龙采纳,获得10
1秒前
2秒前
2秒前
整齐的不评完成签到,获得积分10
4秒前
叉叉茶完成签到 ,获得积分10
4秒前
4秒前
天天快乐应助aha采纳,获得10
4秒前
5秒前
0029发布了新的文献求助10
5秒前
虚心的星星完成签到,获得积分10
7秒前
Edward完成签到,获得积分10
8秒前
水知寒完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
科目三应助三千采纳,获得10
12秒前
12秒前
跳跃毒娘发布了新的文献求助10
13秒前
简单刺猬发布了新的文献求助10
14秒前
1234完成签到,获得积分10
15秒前
xw发布了新的文献求助10
16秒前
Wk应助zaphkiel采纳,获得10
16秒前
17秒前
17秒前
你的女孩TT完成签到,获得积分10
17秒前
雪山飞龙发布了新的文献求助10
17秒前
李健的粉丝团团长应助Lin采纳,获得30
17秒前
18秒前
18秒前
哈哈哈哈发布了新的文献求助10
18秒前
SamuelLiu完成签到,获得积分10
20秒前
现代的诗槐应助iiiorange采纳,获得20
22秒前
俩孩爹发布了新的文献求助10
23秒前
24秒前
JamesPei应助Johnspeed采纳,获得10
27秒前
健壮小懒猪完成签到,获得积分10
28秒前
28秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830980
关于积分的说明 7982408
捐赠科研通 2492814
什么是DOI,文献DOI怎么找? 1329855
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954