亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch

医学 心房颤动 队列 心脏复律 智能手表 心脏病学 内科学 计算机科学 可穿戴计算机 嵌入式系统
作者
Geoffrey H. Tison,José M. Sánchez,Brandon Ballinger,Avesh Kumar Singh,Jeffrey E. Olgin,Mark J. Pletcher,Eric Vittinghoff,Emily S. Lee,Shannon M. Fan,Rachel A. Gladstone,Carlos Mikell,Nimit S. Sohoni,Johnson Hsieh,Gregory M. Marcus
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:3 (5): 409-409 被引量:456
标识
DOI:10.1001/jamacardio.2018.0136
摘要

Importance

Atrial fibrillation (AF) affects 34 million people worldwide and is a leading cause of stroke. A readily accessible means to continuously monitor for AF could prevent large numbers of strokes and death.

Objective

To develop and validate a deep neural network to detect AF using smartwatch data.

Design, Setting, and Participants

In this multinational cardiovascular remote cohort study coordinated at the University of California, San Francisco, smartwatches were used to obtain heart rate and step count data for algorithm development. A total of 9750 participants enrolled in the Health eHeart Study and 51 patients undergoing cardioversion at the University of California, San Francisco, were enrolled between February 2016 and March 2017. A deep neural network was trained using a method called heuristic pretraining in which the network approximated representations of the R-R interval (ie, time between heartbeats) without manual labeling of training data. Validation was performed against the reference standard 12-lead electrocardiography (ECG) in a separate cohort of patients undergoing cardioversion. A second exploratory validation was performed using smartwatch data from ambulatory individuals against the reference standard of self-reported history of persistent AF. Data were analyzed from March 2017 to September 2017.

Main Outcomes and Measures

The sensitivity, specificity, and receiver operating characteristic C statistic for the algorithm to detect AF were generated based on the reference standard of 12-lead ECG–diagnosed AF.

Results

Of the 9750 participants enrolled in the remote cohort, including 347 participants with AF, 6143 (63.0%) were male, and the mean (SD) age was 42 (12) years. There were more than 139 million heart rate measurements on which the deep neural network was trained. The deep neural network exhibited a C statistic of 0.97 (95% CI, 0.94-1.00;P < .001) to detect AF against the reference standard 12-lead ECG–diagnosed AF in the external validation cohort of 51 patients undergoing cardioversion; sensitivity was 98.0% and specificity was 90.2%. In an exploratory analysis relying on self-report of persistent AF in ambulatory participants, the C statistic was 0.72 (95% CI, 0.64-0.78); sensitivity was 67.7% and specificity was 67.6%.

Conclusions and Relevance

This proof-of-concept study found that smartwatch photoplethysmography coupled with a deep neural network can passively detect AF but with some loss of sensitivity and specificity against a criterion-standard ECG. Further studies will help identify the optimal role for smartwatch-guided rhythm assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金薇薇关注了科研通微信公众号
刚刚
星辰大海应助youyou糍粑采纳,获得10
9秒前
1分钟前
尉迟姿发布了新的文献求助10
1分钟前
尉迟姿完成签到,获得积分20
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ding应助万俟采纳,获得10
1分钟前
Lyw完成签到 ,获得积分10
2分钟前
2分钟前
大方易巧完成签到 ,获得积分10
2分钟前
2分钟前
lani完成签到 ,获得积分10
3分钟前
3分钟前
华师发布了新的文献求助30
3分钟前
脑洞疼应助华师采纳,获得10
3分钟前
4分钟前
我不到啊发布了新的文献求助10
4分钟前
摆烂完成签到,获得积分10
4分钟前
万俟完成签到 ,获得积分10
4分钟前
我不到啊完成签到,获得积分10
4分钟前
烟花应助摆烂采纳,获得10
4分钟前
4分钟前
万俟发布了新的文献求助10
4分钟前
souther完成签到,获得积分0
4分钟前
nanali19完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
腰突患者的科研完成签到,获得积分10
4分钟前
4分钟前
摆烂发布了新的文献求助10
4分钟前
5分钟前
圆圆901234发布了新的文献求助10
5分钟前
5分钟前
归尘发布了新的文献求助10
5分钟前
圆圆901234完成签到,获得积分10
5分钟前
柳行天完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484427
求助须知:如何正确求助?哪些是违规求助? 3073435
关于积分的说明 9130961
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702166
科研通“疑难数据库(出版商)”最低求助积分说明 701166