亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors

集合(抽象数据类型) 计算机科学 进化算法 数学优化 多目标优化 算法 单纯形 最优化问题 分解 数学 生态学 几何学 生物 程序设计语言
作者
Md Asafuddoula,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2321-2334 被引量:91
标识
DOI:10.1109/tcyb.2017.2737519
摘要

Multiobjective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems (MaOPs). Development of algorithms to solve MaOPs has garnered significant research attention in recent years. "Decomposition" is a commonly adopted approach toward this aim, wherein the problem is divided into a set of simpler subproblems guided by a set of reference vectors. The reference vectors are often predefined and distributed uniformly in the objective space. Use of such uniform distribution of reference vectors has shown commendable performance on problems with "regular" Pareto optimal front (POF), i.e., those that are nondegenerate, smooth, continuous, and easily mapped by a unit simplex of reference vectors. However, the performance deteriorates for problems with "irregular" POF (i.e., which deviate from above properties), since a number of reference vectors may not have a solution on the POF along them. While adaptive approaches have been suggested in the literature that attempt to delete/insert reference directions conforming to the geometry of the evolving front, their performance may in turn be compromised for problems with regular POFs. This paper presents a generalized version of previously proposed decomposition-based evolutionary algorithm with adaptive reference vectors, intended toward achieving competitive performance for both types of problems. The proposed approach starts off with a set of uniform reference vectors and collects information about feasibility and nondominance of solutions that associate with the reference vectors over a learning period. Subsequently, new reference directions are inserted/deleted, while the original directions may assume an active or inactive role during the course of evolution. Numerical experiments are conducted over a wide range of problems with regular and irregular POFs with up to 15 objectives to demonstrate the competence of the proposed approach with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
时间尘埃完成签到,获得积分10
2秒前
2秒前
柳贯一发布了新的文献求助100
3秒前
6秒前
叶千山完成签到 ,获得积分10
7秒前
10秒前
10秒前
11122发布了新的文献求助10
10秒前
10秒前
婉莹完成签到 ,获得积分0
14秒前
温暖水云发布了新的文献求助10
15秒前
15秒前
18秒前
11122发布了新的文献求助10
20秒前
Kristopher完成签到 ,获得积分10
21秒前
情怀应助王佳俊采纳,获得10
22秒前
22秒前
汉堡包应助tdtk采纳,获得10
26秒前
Cast_Lappland发布了新的文献求助10
28秒前
32秒前
33秒前
王佳俊发布了新的文献求助10
37秒前
hankongli完成签到 ,获得积分10
37秒前
38秒前
沐阳完成签到 ,获得积分10
47秒前
王佳俊完成签到,获得积分10
50秒前
54秒前
55秒前
壹玖一陆完成签到,获得积分20
57秒前
57秒前
59秒前
豆都发布了新的文献求助10
59秒前
耳东陈完成签到 ,获得积分10
1分钟前
壹玖一陆发布了新的文献求助10
1分钟前
科研通AI6应助壹玖一陆采纳,获得10
1分钟前
1分钟前
我是老大应助wuzihao采纳,获得10
1分钟前
max完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490