An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors

集合(抽象数据类型) 计算机科学 进化算法 数学优化 多目标优化 算法 单纯形 最优化问题 分解 数学 几何学 生态学 生物 程序设计语言
作者
Md Asafuddoula,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2321-2334 被引量:91
标识
DOI:10.1109/tcyb.2017.2737519
摘要

Multiobjective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems (MaOPs). Development of algorithms to solve MaOPs has garnered significant research attention in recent years. "Decomposition" is a commonly adopted approach toward this aim, wherein the problem is divided into a set of simpler subproblems guided by a set of reference vectors. The reference vectors are often predefined and distributed uniformly in the objective space. Use of such uniform distribution of reference vectors has shown commendable performance on problems with "regular" Pareto optimal front (POF), i.e., those that are nondegenerate, smooth, continuous, and easily mapped by a unit simplex of reference vectors. However, the performance deteriorates for problems with "irregular" POF (i.e., which deviate from above properties), since a number of reference vectors may not have a solution on the POF along them. While adaptive approaches have been suggested in the literature that attempt to delete/insert reference directions conforming to the geometry of the evolving front, their performance may in turn be compromised for problems with regular POFs. This paper presents a generalized version of previously proposed decomposition-based evolutionary algorithm with adaptive reference vectors, intended toward achieving competitive performance for both types of problems. The proposed approach starts off with a set of uniform reference vectors and collects information about feasibility and nondominance of solutions that associate with the reference vectors over a learning period. Subsequently, new reference directions are inserted/deleted, while the original directions may assume an active or inactive role during the course of evolution. Numerical experiments are conducted over a wide range of problems with regular and irregular POFs with up to 15 objectives to demonstrate the competence of the proposed approach with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sabrina完成签到,获得积分10
1秒前
老张完成签到 ,获得积分10
1秒前
2秒前
单纯胡萝卜完成签到,获得积分10
3秒前
luo完成签到,获得积分10
3秒前
3秒前
虚幻夜白发布了新的文献求助10
4秒前
4秒前
张涛发布了新的文献求助30
4秒前
4秒前
圆圆发布了新的文献求助10
5秒前
6秒前
玉玉鼠发布了新的文献求助10
6秒前
7秒前
刘洋发布了新的文献求助10
8秒前
8秒前
笨笨西牛发布了新的文献求助10
8秒前
jy完成签到 ,获得积分10
9秒前
to高坚果发布了新的文献求助10
9秒前
passerby发布了新的文献求助10
10秒前
10秒前
pdx666完成签到,获得积分10
12秒前
丘比特应助缪伟采纳,获得10
12秒前
JXY完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
知名不具发布了新的文献求助10
13秒前
赫连烙发布了新的文献求助10
14秒前
笑点低的秋蝶完成签到,获得积分10
15秒前
叮叮当当发布了新的文献求助30
16秒前
16秒前
ying完成签到,获得积分10
16秒前
dopamine发布了新的文献求助10
17秒前
麦乐迪应助圆圆采纳,获得10
18秒前
19秒前
幼儿园老大完成签到,获得积分10
19秒前
infe完成签到,获得积分10
19秒前
高高完成签到,获得积分10
19秒前
可爱问寒完成签到 ,获得积分20
20秒前
乘乘完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176