An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors

集合(抽象数据类型) 计算机科学 进化算法 数学优化 多目标优化 算法 单纯形 最优化问题 分解 数学 生态学 几何学 生物 程序设计语言
作者
Md Asafuddoula,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2321-2334 被引量:91
标识
DOI:10.1109/tcyb.2017.2737519
摘要

Multiobjective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems (MaOPs). Development of algorithms to solve MaOPs has garnered significant research attention in recent years. "Decomposition" is a commonly adopted approach toward this aim, wherein the problem is divided into a set of simpler subproblems guided by a set of reference vectors. The reference vectors are often predefined and distributed uniformly in the objective space. Use of such uniform distribution of reference vectors has shown commendable performance on problems with "regular" Pareto optimal front (POF), i.e., those that are nondegenerate, smooth, continuous, and easily mapped by a unit simplex of reference vectors. However, the performance deteriorates for problems with "irregular" POF (i.e., which deviate from above properties), since a number of reference vectors may not have a solution on the POF along them. While adaptive approaches have been suggested in the literature that attempt to delete/insert reference directions conforming to the geometry of the evolving front, their performance may in turn be compromised for problems with regular POFs. This paper presents a generalized version of previously proposed decomposition-based evolutionary algorithm with adaptive reference vectors, intended toward achieving competitive performance for both types of problems. The proposed approach starts off with a set of uniform reference vectors and collects information about feasibility and nondominance of solutions that associate with the reference vectors over a learning period. Subsequently, new reference directions are inserted/deleted, while the original directions may assume an active or inactive role during the course of evolution. Numerical experiments are conducted over a wide range of problems with regular and irregular POFs with up to 15 objectives to demonstrate the competence of the proposed approach with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tony发布了新的文献求助10
刚刚
机器猫发布了新的文献求助10
刚刚
子车茗应助白先生采纳,获得10
2秒前
2秒前
研友_Z343J8完成签到 ,获得积分10
3秒前
zzyyy发布了新的文献求助10
6秒前
Captain发布了新的文献求助10
8秒前
8秒前
wub完成签到 ,获得积分10
9秒前
jj158完成签到,获得积分20
9秒前
在水一方应助wZx采纳,获得10
9秒前
懒羊羊发布了新的文献求助10
9秒前
体贴的苞络完成签到 ,获得积分10
11秒前
yuzu发布了新的文献求助10
11秒前
12秒前
14秒前
小蘑菇应助直率的钢铁侠采纳,获得10
14秒前
14秒前
15秒前
16秒前
1874发布了新的文献求助20
16秒前
jj158发布了新的文献求助10
17秒前
hokuto应助巫雁采纳,获得10
17秒前
carbonhan应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
18秒前
Ava应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
18秒前
JamesPei应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
包容新蕾发布了新的文献求助10
19秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068