An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors

集合(抽象数据类型) 计算机科学 进化算法 数学优化 多目标优化 算法 单纯形 最优化问题 分解 数学 生态学 几何学 生物 程序设计语言
作者
Md Asafuddoula,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2321-2334 被引量:91
标识
DOI:10.1109/tcyb.2017.2737519
摘要

Multiobjective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems (MaOPs). Development of algorithms to solve MaOPs has garnered significant research attention in recent years. "Decomposition" is a commonly adopted approach toward this aim, wherein the problem is divided into a set of simpler subproblems guided by a set of reference vectors. The reference vectors are often predefined and distributed uniformly in the objective space. Use of such uniform distribution of reference vectors has shown commendable performance on problems with "regular" Pareto optimal front (POF), i.e., those that are nondegenerate, smooth, continuous, and easily mapped by a unit simplex of reference vectors. However, the performance deteriorates for problems with "irregular" POF (i.e., which deviate from above properties), since a number of reference vectors may not have a solution on the POF along them. While adaptive approaches have been suggested in the literature that attempt to delete/insert reference directions conforming to the geometry of the evolving front, their performance may in turn be compromised for problems with regular POFs. This paper presents a generalized version of previously proposed decomposition-based evolutionary algorithm with adaptive reference vectors, intended toward achieving competitive performance for both types of problems. The proposed approach starts off with a set of uniform reference vectors and collects information about feasibility and nondominance of solutions that associate with the reference vectors over a learning period. Subsequently, new reference directions are inserted/deleted, while the original directions may assume an active or inactive role during the course of evolution. Numerical experiments are conducted over a wide range of problems with regular and irregular POFs with up to 15 objectives to demonstrate the competence of the proposed approach with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷阳完成签到,获得积分10
刚刚
刚刚
嬴炎完成签到,获得积分10
刚刚
zhouting完成签到,获得积分10
刚刚
魂断红颜发布了新的文献求助10
1秒前
2秒前
Araa发布了新的文献求助10
2秒前
壹贰叁完成签到,获得积分10
3秒前
3秒前
余其钵发布了新的文献求助10
3秒前
欣欣完成签到 ,获得积分10
4秒前
4秒前
4秒前
Orange应助JK157采纳,获得10
5秒前
发发旦旦发布了新的文献求助10
5秒前
汉堡包应助LG采纳,获得10
5秒前
6秒前
忧虑的安青完成签到,获得积分10
6秒前
7秒前
8秒前
迷路凌柏发布了新的文献求助10
8秒前
杜杜完成签到,获得积分10
8秒前
天天向上完成签到,获得积分10
8秒前
10秒前
伟蓓1314完成签到,获得积分10
11秒前
Asystasia7发布了新的文献求助10
11秒前
11秒前
Owen应助Davy_Y采纳,获得10
12秒前
suchui完成签到,获得积分10
12秒前
沉静的含海完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
大模型应助keep采纳,获得10
15秒前
15秒前
Lucas应助摇瓶子的蜗牛采纳,获得10
16秒前
帮帮孩子完成签到,获得积分10
17秒前
17秒前
123456完成签到 ,获得积分10
18秒前
18秒前
钰天心应助余问芙采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758