Utilization of iPSC-derived human neurons for high-throughput drug-induced peripheral neuropathy screening

长春花 紫杉烷 神经毒性 药理学 周围神经病变 伊波希隆 医学 药品 化疗 化疗所致周围神经病变 癌症 毒性 内科学 化学 乳腺癌 糖尿病 内分泌学 立体化学
作者
Payal Rana,Gregory C. Luerman,Dietmar Hess,Elizabeth Rubitski,Karissa Adkins,Chris Somps
出处
期刊:Toxicology in Vitro [Elsevier]
卷期号:45: 111-118 被引量:50
标识
DOI:10.1016/j.tiv.2017.08.014
摘要

As the number of cancer survivors continues to grow, awareness of long-term toxicities and impact on quality of life after chemotherapy treatment in cancer survivors has intensified. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common side effects of modern chemotherapy. Animal models are used to study peripheral neuropathy and predict human risk; however, such models are labor-intensive and limited translatability between species has become a major challenge. Moreover, the mechanisms underlying CIPN have not been precisely determined and few human neuronal models to study CIPN exist. Here, we have developed a high-throughput drug-induced neurotoxicity screening model using human iPSC-derived peripheral-like neurons to study the effect of chemotherapy agents on neuronal health and morphology using high content imaging measurements (neurite length and neuronal cell viability). We utilized this model to test various classes of chemotherapeutic agents with known clinical liability to cause peripheral neuropathy such as platinum agents, taxanes, vinca alkaloids, proteasome inhibitors, and anti-angiogenic compounds. The model was sensitive to compounds that cause interference in microtubule dynamics, especially the taxane, epothilone, and vinca alkaloids. Conversely, the model was not sensitive to platinum and anti-angiogenic chemotherapeutics; compounds that are not reported to act directly on neuronal processes. In summary, we believe this model has utility for high-throughput screening and prediction of human risk for CIPN for novel chemotherapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
afeiwoo完成签到,获得积分10
3秒前
hang完成签到,获得积分10
3秒前
5秒前
聪明板栗发布了新的文献求助30
6秒前
6秒前
寻绿完成签到,获得积分10
7秒前
7秒前
沉默寻凝完成签到,获得积分10
7秒前
Lea完成签到,获得积分10
10秒前
墨雨云烟完成签到 ,获得积分10
11秒前
花啊拾肆完成签到,获得积分10
11秒前
楠瓜发布了新的文献求助10
12秒前
yongle发布了新的文献求助10
12秒前
13秒前
鱼圆杂铺完成签到,获得积分10
14秒前
枵蕾发布了新的文献求助10
17秒前
彭于彦祖应助科研通管家采纳,获得150
18秒前
yar应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
Liou应助科研通管家采纳,获得10
18秒前
yar应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
pcr163应助科研通管家采纳,获得200
18秒前
yar应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
英俊的铭应助DrKe采纳,获得10
19秒前
20秒前
21秒前
liu完成签到,获得积分10
21秒前
劲秉应助666采纳,获得30
22秒前
劲秉应助666采纳,获得30
22秒前
灵巧的奇迹完成签到,获得积分10
24秒前
cc发布了新的文献求助10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268989
求助须知:如何正确求助?哪些是违规求助? 2908595
关于积分的说明 8345992
捐赠科研通 2578746
什么是DOI,文献DOI怎么找? 1402393
科研通“疑难数据库(出版商)”最低求助积分说明 655431
邀请新用户注册赠送积分活动 634581