亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor–transmembrane protein 16A–voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma

去极化 化学 信号转导 炎症 支气管高反应性 卵清蛋白 细胞生物学 内分泌学 内科学 免疫学 医学 生物 生物化学 免疫系统 呼吸道疾病
作者
Pei Wang,Wei Zhao,Jie Sun,Tao Tao,Xin Chen,Yanyan Zheng,Cheng‐Hai Zhang,Zhong Chen,Yun‐Qian Gao,Fan She,Ye-Qiong Li,Lisha Wei,Ping Lü,Caiping Chen,Ji Zhou,Daquan Wang,Liang Chen,Xiaohao Shi,Linhong Deng,Ronghua ZhuGe,Huaqun Chen,Min‐Sheng Zhu
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:141 (4): 1259-1268.e11 被引量:42
标识
DOI:10.1016/j.jaci.2017.05.053
摘要

BackgroundAllergic inflammation has long been implicated in asthmatic hyperresponsiveness of airway smooth muscle (ASM), but its underlying mechanism remains incompletely understood. Serving as G protein-coupled receptor agonists, several inflammatory mediators can induce membrane depolarization, contract ASM, and augment cholinergic contractile response. We hypothesized that the signal cascade integrating on membrane depolarization by the mediators might involve asthmatic hyperresponsiveness.ObjectiveWe sought to investigate the signaling transduction of inflammatory mediators in ASM contraction and assess its contribution in the genesis of hyperresponsiveness.MethodsWe assessed the capacity of inflammatory mediators to induce depolarization currents by electrophysiological analysis. We analyzed the phenotypes of transmembrane protein 16A (TMEM16A) knockout mice, applied pharmacological reagents, and measured the Ca2+ signal during ASM contraction. To study the role of the depolarization signaling in asthmatic hyperresponsiveness, we measured the synergistic contraction by methacholine and inflammatory mediators both ex vivo and in an ovalbumin-induced mouse model.ResultsInflammatory mediators, such as 5-hydroxytryptamin, histamine, U46619, and leukotriene D4, are capable of inducing Ca2+-activated Cl− currents in ASM cells, and these currents are mediated by TMEM16A. A combination of multiple analysis revealed that a G protein-coupled receptor–TMEM16A–voltage-dependent Ca2+ channel signaling axis was required for ASM contraction induced by inflammatory mediators. Block of TMEM16A activity may significantly inhibit the synergistic contraction of acetylcholine and the mediators and hence reduces hypersensitivity.ConclusionsA G protein-coupled receptor–TMEM16A–voltage-dependent Ca2+ channel axis contributes to inflammatory mediator-induced ASM contraction and synergistically activated TMEM16A by allergic inflammatory mediators with cholinergic stimuli. Allergic inflammation has long been implicated in asthmatic hyperresponsiveness of airway smooth muscle (ASM), but its underlying mechanism remains incompletely understood. Serving as G protein-coupled receptor agonists, several inflammatory mediators can induce membrane depolarization, contract ASM, and augment cholinergic contractile response. We hypothesized that the signal cascade integrating on membrane depolarization by the mediators might involve asthmatic hyperresponsiveness. We sought to investigate the signaling transduction of inflammatory mediators in ASM contraction and assess its contribution in the genesis of hyperresponsiveness. We assessed the capacity of inflammatory mediators to induce depolarization currents by electrophysiological analysis. We analyzed the phenotypes of transmembrane protein 16A (TMEM16A) knockout mice, applied pharmacological reagents, and measured the Ca2+ signal during ASM contraction. To study the role of the depolarization signaling in asthmatic hyperresponsiveness, we measured the synergistic contraction by methacholine and inflammatory mediators both ex vivo and in an ovalbumin-induced mouse model. Inflammatory mediators, such as 5-hydroxytryptamin, histamine, U46619, and leukotriene D4, are capable of inducing Ca2+-activated Cl− currents in ASM cells, and these currents are mediated by TMEM16A. A combination of multiple analysis revealed that a G protein-coupled receptor–TMEM16A–voltage-dependent Ca2+ channel signaling axis was required for ASM contraction induced by inflammatory mediators. Block of TMEM16A activity may significantly inhibit the synergistic contraction of acetylcholine and the mediators and hence reduces hypersensitivity. A G protein-coupled receptor–TMEM16A–voltage-dependent Ca2+ channel axis contributes to inflammatory mediator-induced ASM contraction and synergistically activated TMEM16A by allergic inflammatory mediators with cholinergic stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助张益达采纳,获得10
9秒前
21秒前
volvoamg发布了新的文献求助10
24秒前
26秒前
41秒前
57秒前
1分钟前
张益达发布了新的文献求助10
1分钟前
1分钟前
1分钟前
volvoamg发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
Raine完成签到,获得积分10
1分钟前
1分钟前
volvoamg发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
HIMINNN完成签到,获得积分20
2分钟前
2分钟前
volvoamg发布了新的文献求助10
3分钟前
GCD完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
bkagyin应助司徒无剑采纳,获得10
4分钟前
4分钟前
4分钟前
樱桃猴子应助秋天采纳,获得10
4分钟前
volvoamg发布了新的文献求助10
4分钟前
4分钟前
稻子完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
司徒无剑发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412604
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878