粒体自噬
线粒体
线粒体生物发生
氧化应激
活性氧
细胞生物学
呼吸链
线粒体ROS
自噬
线粒体呼吸链
生物
内分泌学
细胞凋亡
生物化学
作者
Dimitry A. Chistiakov,Tatiana P. Shkurat,Alexandra А. Melnichenko,Andrey V. Grechko,Alexander N. Orekhov
标识
DOI:10.1080/07853890.2017.1417631
摘要
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Proper mitochondrial function is necessary in tissues and organs that are of high energy demand, including the heart. Mitochondria are very sensitive to nutrient and oxygen supply and undergo metabolic adaptation to the changing environment. In CVD, such an adaptation is impaired, which, in turn, leads to a progressive decline of the mitochondrial function associated with abnormalities in the respiratory chain and ATP synthesis, increased oxidative stress, and loss of the structural integrity of mitochondria. Uncoupling of the electron transport chain in dysfunctional mitochondria results in enhanced production of reactive oxygen species, depletion of cell ATP pool, extensive cell damage, and apoptosis of cardiomyocytes. Mitophagy is a process, during which cells clear themselves from dysfunctional and damaged mitochondria using autophagic mechanism. Deregulation of this process in the failing heart, accumulation of dysfunctional mitochondria makes the situation even more adverse. In cardiac pathology, aberrations of the activity of the respiratory chain and ATP production may be considered as a core of mitochondrial dysfunction. Indeed, therapeutic restoration of these key functional properties can be considered as a primary goal for improvement of mitochondrial dysfunction in CVD.Key messagesMitochondrial dysfunction plays a crucial role in cardiovascular disease pathogenesis.Cardiovascular disease is associated with altered mithochondrial biogenesis and clearance.In cardiovascular disease, impaired mitochondrial function results in decreased ATP production and enhanced ROS formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI