Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature

ATRX公司 接收机工作特性 Lasso(编程语言) 人工智能 医学 计算机科学 模式识别(心理学) 机器学习 突变 生物 遗传学 基因 万维网
作者
Yiming Li,Xing Liu,Zenghui Qian,Zhiyan Sun,Kaibin Xu,Kai Wang,Xing Fan,Zhang Zhong,Shaowu Li,Yinyan Wang,Tao Jiang
出处
期刊:European Radiology [Springer Nature]
卷期号:28 (7): 2960-2968 被引量:86
标识
DOI:10.1007/s00330-017-5267-0
摘要

To predict ATRX mutation status in patients with lower-grade gliomas using radiomic analysis.Cancer Genome Atlas (TCGA) patients with lower-grade gliomas were randomly allocated into training (n = 63) and validation (n = 32) sets. An independent external-validation set (n = 91) was built based on the Chinese Genome Atlas (CGGA) database. After feature extraction, an ATRX-related signature was constructed. Subsequently, the radiomic signature was combined with a support vector machine to predict ATRX mutation status in training, validation and external-validation sets. Predictive performance was assessed by receiver operating characteristic curve analysis. Correlations between the selected features were also evaluated.Nine radiomic features were screened as an ATRX-associated radiomic signature of lower-grade gliomas based on the LASSO regression model. All nine radiomic features were texture-associated (e.g. sum average and variance). The predictive efficiencies measured by the area under the curve were 94.0 %, 92.5 % and 72.5 % in the training, validation and external-validation sets, respectively. The overall correlations between the nine radiomic features were low in both TCGA and CGGA databases.Using radiomic analysis, we achieved efficient prediction of ATRX genotype in lower-grade gliomas, and our model was effective in two independent databases.• ATRX in lower-grade gliomas could be predicted using radiomic analysis. • The LASSO regression algorithm and SVM performed well in radiomic analysis. • Nine radiomic features were screened as an ATRX-predictive radiomic signature. • The machine-learning model for ATRX-prediction was validated by an independent database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hata发布了新的文献求助10
1秒前
1秒前
yangyangyang发布了新的文献求助10
1秒前
keran发布了新的文献求助10
1秒前
shin0324完成签到,获得积分10
2秒前
pencil123应助易达采纳,获得10
2秒前
守约完成签到,获得积分10
3秒前
4秒前
4秒前
愤怒的之玉完成签到 ,获得积分10
5秒前
5秒前
欧阳小枫完成签到,获得积分10
5秒前
江海下百川完成签到,获得积分10
5秒前
5秒前
JamesPei应助小宇采纳,获得10
6秒前
6秒前
阿桂完成签到,获得积分10
6秒前
6秒前
沙比完成签到,获得积分10
7秒前
一一完成签到,获得积分10
7秒前
MicroCytoYL完成签到,获得积分10
8秒前
8秒前
一只特立独行的朱完成签到,获得积分10
8秒前
步行街车神ahua完成签到,获得积分10
8秒前
8秒前
keran完成签到,获得积分20
8秒前
1111发布了新的文献求助10
8秒前
动如脱兔发布了新的文献求助10
9秒前
starry完成签到,获得积分10
9秒前
10秒前
Grayball应助愉快的冰珍采纳,获得10
10秒前
10秒前
11秒前
Pangsj发布了新的文献求助10
11秒前
11秒前
11秒前
yzy完成签到,获得积分20
12秒前
13秒前
13秒前
Hang发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672