Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature

ATRX公司 接收机工作特性 Lasso(编程语言) 人工智能 医学 计算机科学 模式识别(心理学) 机器学习 突变 生物 遗传学 基因 万维网
作者
Yiming Li,Xing Liu,Zenghui Qian,Zhiyan Sun,Kaibin Xu,Kai Wang,Xing Fan,Zhang Zhong,Shaowu Li,Yinyan Wang,Tao Jiang
出处
期刊:European Radiology [Springer Nature]
卷期号:28 (7): 2960-2968 被引量:86
标识
DOI:10.1007/s00330-017-5267-0
摘要

To predict ATRX mutation status in patients with lower-grade gliomas using radiomic analysis.Cancer Genome Atlas (TCGA) patients with lower-grade gliomas were randomly allocated into training (n = 63) and validation (n = 32) sets. An independent external-validation set (n = 91) was built based on the Chinese Genome Atlas (CGGA) database. After feature extraction, an ATRX-related signature was constructed. Subsequently, the radiomic signature was combined with a support vector machine to predict ATRX mutation status in training, validation and external-validation sets. Predictive performance was assessed by receiver operating characteristic curve analysis. Correlations between the selected features were also evaluated.Nine radiomic features were screened as an ATRX-associated radiomic signature of lower-grade gliomas based on the LASSO regression model. All nine radiomic features were texture-associated (e.g. sum average and variance). The predictive efficiencies measured by the area under the curve were 94.0 %, 92.5 % and 72.5 % in the training, validation and external-validation sets, respectively. The overall correlations between the nine radiomic features were low in both TCGA and CGGA databases.Using radiomic analysis, we achieved efficient prediction of ATRX genotype in lower-grade gliomas, and our model was effective in two independent databases.• ATRX in lower-grade gliomas could be predicted using radiomic analysis. • The LASSO regression algorithm and SVM performed well in radiomic analysis. • Nine radiomic features were screened as an ATRX-predictive radiomic signature. • The machine-learning model for ATRX-prediction was validated by an independent database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Hello应助啦啦采纳,获得10
3秒前
马桶盖盖子完成签到 ,获得积分10
3秒前
153495159应助和成采纳,获得10
4秒前
虚幻沛菡完成签到 ,获得积分10
4秒前
ajin发布了新的文献求助30
7秒前
lai发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助河马采纳,获得10
9秒前
糕糕完成签到,获得积分10
10秒前
xiaohuihui完成签到,获得积分10
11秒前
12秒前
lironghao完成签到,获得积分10
14秒前
Jasper应助沾沾波采纳,获得10
14秒前
李昕123发布了新的文献求助10
16秒前
zhikaiyici完成签到,获得积分10
16秒前
20秒前
22秒前
香蕉以菱完成签到 ,获得积分10
23秒前
23秒前
well发布了新的文献求助10
25秒前
坦率抽屉完成签到 ,获得积分10
25秒前
毛聋聋完成签到 ,获得积分10
26秒前
容与完成签到,获得积分10
26秒前
26秒前
lironghao发布了新的文献求助10
27秒前
wyw完成签到 ,获得积分10
27秒前
啦啦发布了新的文献求助10
30秒前
精明元霜应助天真书竹采纳,获得10
32秒前
_Forelsket_完成签到,获得积分10
32秒前
shanely完成签到,获得积分10
33秒前
kuny完成签到 ,获得积分10
34秒前
hdx完成签到 ,获得积分10
36秒前
37秒前
直率的乐萱完成签到 ,获得积分10
38秒前
在水一方应助Forest采纳,获得10
39秒前
JamesPei应助ganchao1776采纳,获得10
41秒前
浅尝离白应助河马采纳,获得10
41秒前
朱zhu发布了新的文献求助10
43秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620