已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature

ATRX公司 接收机工作特性 Lasso(编程语言) 人工智能 医学 计算机科学 模式识别(心理学) 机器学习 突变 生物 遗传学 基因 万维网
作者
Yiming Li,Xing Liu,Zenghui Qian,Zhiyan Sun,Kaibin Xu,Kai Wang,Xing Fan,Zhang Zhong,Shaowu Li,Yinyan Wang,Tao Jiang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:28 (7): 2960-2968 被引量:86
标识
DOI:10.1007/s00330-017-5267-0
摘要

To predict ATRX mutation status in patients with lower-grade gliomas using radiomic analysis.Cancer Genome Atlas (TCGA) patients with lower-grade gliomas were randomly allocated into training (n = 63) and validation (n = 32) sets. An independent external-validation set (n = 91) was built based on the Chinese Genome Atlas (CGGA) database. After feature extraction, an ATRX-related signature was constructed. Subsequently, the radiomic signature was combined with a support vector machine to predict ATRX mutation status in training, validation and external-validation sets. Predictive performance was assessed by receiver operating characteristic curve analysis. Correlations between the selected features were also evaluated.Nine radiomic features were screened as an ATRX-associated radiomic signature of lower-grade gliomas based on the LASSO regression model. All nine radiomic features were texture-associated (e.g. sum average and variance). The predictive efficiencies measured by the area under the curve were 94.0 %, 92.5 % and 72.5 % in the training, validation and external-validation sets, respectively. The overall correlations between the nine radiomic features were low in both TCGA and CGGA databases.Using radiomic analysis, we achieved efficient prediction of ATRX genotype in lower-grade gliomas, and our model was effective in two independent databases.• ATRX in lower-grade gliomas could be predicted using radiomic analysis. • The LASSO regression algorithm and SVM performed well in radiomic analysis. • Nine radiomic features were screened as an ATRX-predictive radiomic signature. • The machine-learning model for ATRX-prediction was validated by an independent database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助B站萧亚轩采纳,获得10
刚刚
英姑应助糊糊采纳,获得10
2秒前
雨柏完成签到 ,获得积分10
4秒前
6秒前
7秒前
共享精神应助kk采纳,获得10
8秒前
星落枝头发布了新的文献求助10
9秒前
虚幻初之发布了新的文献求助10
11秒前
moyu123完成签到,获得积分10
11秒前
田様应助Jase采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
Arvilzzz发布了新的文献求助10
18秒前
19秒前
66发布了新的文献求助10
20秒前
20秒前
柯一一应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
iNk应助科研通管家采纳,获得20
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得20
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
iNk应助科研通管家采纳,获得20
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
22秒前
24秒前
NexusExplorer应助66采纳,获得10
26秒前
26秒前
曾经白亦完成签到 ,获得积分10
26秒前
27秒前
28秒前
无聊的寒香完成签到,获得积分10
28秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021