Learning a robust classifier for short-term traffic state prediction

计算机科学 支持向量机 离群值 稳健性(进化) 数据挖掘 人工智能 机器学习 智能交通系统 交通生成模型 实时计算 生物化学 基因 工程类 土木工程 化学
作者
He Yan,Liyong Fu,Yong Qi,Li Cheng,Qiaolin Ye,Dong‐Jun Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:242: 108368-108368 被引量:4
标识
DOI:10.1016/j.knosys.2022.108368
摘要

Accurate and real-time prediction of short-term traffic states is a crucial research topic in modern intelligent transportation systems. However, effectively modeling traffic state predictions is difficult due to the complicated characteristics of stochastic and dynamic traffic processes. In addition, collected traffic data are typically influenced by external factors ( e.g. , weather, traffic jams and accidents), leading to errors and missing data. This increases the difficulty in selecting an effective method for predicting traffic conditions over time. To improve the traffic state prediction performance and alleviate the negative effect of traffic data with outliers, a novel multiclass classification least squares twin support vector machine model based on the robust L 2,p -norm ( 0 < p ≤ 2 ) distance, known as PLSTSVM, was proposed. We adjusted the PLSTSVM parameters to balance the prediction accuracy and training time. To solve the optimization problem of the PLSTSVM, an iterative algorithm was developed, which has great potential for solving other optimization problems. In addition, an integrated classification indicator system based on speed, traffic volume, occupancy rate and ample degree was used, increasing the feasibility of the traffic state analysis. To improve the learning and generalization abilities of the nonlinear PLSTSVM, we combined the polynomial kernel function and the radial basis function to construct a hybrid kernel function. The results on two real traffic datasets demonstrate that our model yields better prediction performance and robustness than other competitors, which make unsatisfactory predictions. • A robust multi-class SVM is proposed to alleviate the effect of traffic data with outliers. • An iterative algorithm is designed to solve non-smooth L 2,p -norm optimization problem. • A novel classification indicator (ample degree) is utilized to forecast the traffic state. • A hybrid kernel function is built by combining polynomial and Gaussian kernel for multi-class SVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
争气完成签到 ,获得积分10
4秒前
36456657应助科研通管家采纳,获得10
4秒前
36456657应助科研通管家采纳,获得10
4秒前
36456657应助科研通管家采纳,获得10
5秒前
36456657应助科研通管家采纳,获得10
5秒前
小玉米完成签到 ,获得积分10
5秒前
orixero应助weidongwu采纳,获得10
7秒前
科研的小狗完成签到 ,获得积分10
8秒前
9秒前
9秒前
可爱的函函应助Bob采纳,获得10
10秒前
10秒前
棠以秧完成签到 ,获得积分10
10秒前
我思故我在完成签到,获得积分0
11秒前
爆米花应助sll采纳,获得10
12秒前
dlut0407完成签到,获得积分10
13秒前
随机发布了新的文献求助10
14秒前
Iron_five完成签到 ,获得积分10
14秒前
SCI完成签到,获得积分10
15秒前
LLLLLL完成签到,获得积分10
15秒前
小文子完成签到,获得积分10
15秒前
yongjiu09发布了新的文献求助10
15秒前
小城故事完成签到,获得积分10
17秒前
douya发布了新的文献求助10
17秒前
lucia5354完成签到,获得积分10
17秒前
17秒前
叶落无痕、完成签到,获得积分10
18秒前
小确幸完成签到,获得积分10
18秒前
烟花应助tg2024采纳,获得10
18秒前
苦咖啡行僧完成签到 ,获得积分10
18秒前
ZXR完成签到,获得积分10
19秒前
妖精完成签到 ,获得积分10
20秒前
20秒前
SCUWJ发布了新的文献求助10
21秒前
烟花应助虚幻浩宇采纳,获得10
22秒前
爸爸完成签到,获得积分10
24秒前
weidongwu发布了新的文献求助10
24秒前
daydayup完成签到,获得积分10
25秒前
陈皮糖不酸完成签到,获得积分10
26秒前
woobinhua完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555910
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391334
捐赠科研通 2831220
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890