Deep learning model improves radiologists’ performance in detection and classification of breast lesions

接收机工作特性 医学 乳腺摄影术 置信区间 放射科 曲线下面积 曲线下面积 假阳性率 预测值 人工智能 机器学习 乳腺癌 计算机科学 内科学 癌症 药代动力学
作者
Ying‐Shi Sun,Yu‐Hong Qu,Dong Wang,Yi Li,Lin Ye,Jingbo Du,Bing Xu,Baoqing Li,Xiaoting Li,Kexin Zhang,Yan‐Jie Shi,Rui-Jia Sun,Yichuan Wang,Rong Long,Dengbo Chen,Hai-Jiao Li,Liwei Wang,Min Cao
出处
期刊:Chinese Journal of Cancer Research [AME Publishing Company]
卷期号:33 (6): 682-693 被引量:8
标识
DOI:10.21147/j.issn.1000-9604.2021.06.05
摘要

Computer-aided diagnosis using deep learning algorithms has been initially applied in the field of mammography, but there is no large-scale clinical application.This study proposed to develop and verify an artificial intelligence model based on mammography. Firstly, mammograms retrospectively collected from six centers were randomized to a training dataset and a validation dataset for establishing the model. Secondly, the model was tested by comparing 12 radiologists' performance with and without it. Finally, prospectively enrolled women with mammograms from six centers were diagnosed by radiologists with the model. The detection and diagnostic capabilities were evaluated using the free-response receiver operating characteristic (FROC) curve and ROC curve.The sensitivity of model for detecting lesions after matching was 0.908 for false positive rate of 0.25 in unilateral images. The area under ROC curve (AUC) to distinguish the benign lesions from malignant lesions was 0.855 [95% confidence interval (95% CI): 0.830, 0.880]. The performance of 12 radiologists with the model was higher than that of radiologists alone (AUC: 0.852 vs. 0.805, P=0.005). The mean reading time of with the model was shorter than that of reading alone (80.18 s vs. 62.28 s, P=0.032). In prospective application, the sensitivity of detection reached 0.887 at false positive rate of 0.25; the AUC of radiologists with the model was 0.983 (95% CI: 0.978, 0.988), with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 94.36%, 98.07%, 87.76%, and 99.09%, respectively.The artificial intelligence model exhibits high accuracy for detecting and diagnosing breast lesions, improves diagnostic accuracy and saves time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余应助jacksam采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
cotton完成签到 ,获得积分10
1秒前
1秒前
2秒前
小鲸鱼完成签到,获得积分10
2秒前
略略略完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
Morii1999发布了新的文献求助10
3秒前
4秒前
夹子方糖完成签到,获得积分10
4秒前
练习者发布了新的文献求助10
5秒前
昏睡的蟠桃应助阿敬采纳,获得30
6秒前
怅望千秋完成签到 ,获得积分10
6秒前
6秒前
6秒前
wang1完成签到 ,获得积分10
6秒前
jinxing发布了新的文献求助10
6秒前
完美世界应助轩然采纳,获得10
7秒前
标致的紫翠完成签到,获得积分20
7秒前
白青发布了新的文献求助10
7秒前
7秒前
积极思松完成签到,获得积分10
7秒前
7秒前
8秒前
刘明发布了新的文献求助10
8秒前
yiyimx发布了新的文献求助10
8秒前
ruilong完成签到,获得积分10
9秒前
开放的傲柔完成签到 ,获得积分10
9秒前
11ran完成签到,获得积分10
10秒前
林lin完成签到 ,获得积分10
10秒前
烟酒不离生完成签到,获得积分10
10秒前
11秒前
aurora应助思嗡采纳,获得10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365