实时仿真
电力电子
瞬态(计算机编程)
转换器
计算机科学
计算
功率(物理)
数码产品
电力系统
电力系统仿真
领域(数学)
电子线路
电压
模拟
电子工程
工程类
电气工程
物理
操作系统
纯数学
量子力学
数学
算法
作者
Giovanni De Carne,Georg Lauss,Mazheruddin H. Syed,Antonello Monti,Andrea Benigni,Shahab Karrari,Panos Kotsampopoulos,M. Omar Faruque
标识
DOI:10.1109/oajpe.2022.3148777
摘要
Investigations of the dynamic behaviour of power electronic components integrated into electric networks require suitable and established simulation methodologies. Real-time simulation represents a frequently applied methodology for analyzing the steady-state and transient behavior of electric power systems. This work introduces a guideline on how to model power electronics converters in digital real time simulators, taking into account the trade-off between model accuracy and the required computation time. Based on this concept, possible execution approaches with respect to the usage of central processing unit and field-programmable gate array components are highlighted. Simulation test scenario, such as primary frequency regulation and low voltage ride through, have been performed and accuracy indices are discussed for each implemented real-time model and each test scenario, respectively. Finally, a run-time analysis of presented real-time setups is given and real-time simulation results are compared. This manuscript demonstrates important differences in real-time simulation modelling, providing useful guidelines for the decision making of power engineers.
科研通智能强力驱动
Strongly Powered by AbleSci AI