电化学
材料科学
锂(药物)
阴极
电解质
化学工程
扩散
介电谱
复合数
纳米
表面改性
兴奋剂
涂层
锰
相(物质)
离子
纳米技术
电极
复合材料
冶金
光电子学
化学
物理化学
热力学
医学
物理
工程类
内分泌学
有机化学
作者
Chao Shen,Yiqian Liu,Wenrong Li,Xiaoyu Liu,Jingwei Xie,Jinlong Jiang,Yong Jiang,Bing Zhao,Jiujun Zhang
标识
DOI:10.1016/j.jcis.2022.01.176
摘要
High-energy-density lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 is regarded as one of the most promising cathode materials for lithium-ion batteries. However, its practical application is restricted by critical kinetics drawbacks and poor low-temperature electrochemical performances. In this research, Li1.2Ni0.13Co0.13Mn0.54O2 submicron particles coated by a Li7La3Zr2O12 (LLZO) layer and co-doped by La/Zr cations has been fabricated via a facile one-pot sol-gel technique and subsequent heat treatment. The coating LLZO layer with a few nanometers is able to build a rapid lithium-ion transport channel for adjacent particles and suppress severe side reactions between active material and the electrolyte. Moreover, large-radius La/Zr cations co-doping can broaden the diffusion paths of lithium ions, hinder the detrimental structural transformation, and improve the electrochemical structure stability of the cathode during repeated cycles. Owing to numerous merits from this multifunctional surface modification strategy, the modified Li1.2Ni0.13Co0.13Mn0.54O2 composite exhibits the significantly decreased interface impedance, enhanced Li+ diffusion kinetics and mitigated phase transformation, as well as excellent low-temperature electrochemical performance. It can contribute ultrahigh capacities of 173.8 mAh g-1 at -10 ℃ and 134.1 mAh g-1 at -20 ℃, respectively, displaying great application prospects of Li-rich cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI