Printable Self-Activated Liquid Metal Stretchable Conductors from Polyvinylpyrrolidone-Functionalized Eutectic Gallium Indium Composites

材料科学 可伸缩电子设备 聚乙烯吡咯烷酮 复合数 导电体 液态金属 复合材料 共晶体系 柔性电子器件 弹性体 纳米技术 数码产品 纳米复合材料 高分子化学 电气工程 工程类 合金
作者
Yejin Jo,Jae Hyuk Hwang,Sun Sook Lee,Su Yeon Lee,Yong Seok Kim,Dong‐Gyun Kim,Youngmin Choi,Sunho Jeong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (8): 10747-10757 被引量:20
标识
DOI:10.1021/acsami.1c20185
摘要

Stretchable electronic circuits are critical in a variety of next-generation electronics applications, including soft robots, wearable technologies, and biomedical applications. To date, printable composite conductors comprising various types of conductive fillers have been suggested to achieve high electrical conductance and excellent stretchability. Among them, liquid metal particles have been considered as a viable candidate filler that can meet the necessary prerequisites. However, a mechanical activation process is needed to generate interconnected liquid channels inside elastomeric polymers. In this study, we have developed a chemical strategy of surface-functionalizing liquid metal particles to eliminate the necessity of additional mechanical activation processes. We found that the characteristic conformations of the polyvinylpyrrolidone surrounding eutectic gallium indium particles are highly dependent on the molecular weight of polyvinylpyrrolidone. By virtue of the specific chemical roles of polyvinylpyrrolidone, the as-printed composite layers are highly conductive and stretchable, exhibiting an electrical conductivity approaching 8372 S/cm at 100% strain and an invariant resistance change of 0.92 even at 75% strain after a 60,000 cycle test. The results demonstrate that the self-activated liquid metal-based composite conductors are applicable to traditional stretchable electronics, healable stretchable electronics, and shape-morphable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
1秒前
2秒前
3秒前
英俊的铭应助小安采纳,获得10
4秒前
5秒前
sun完成签到,获得积分10
5秒前
耍酷的夏云应助勤劳落雁采纳,获得10
7秒前
7秒前
ywang发布了新的文献求助10
7秒前
车秋寒完成签到,获得积分10
7秒前
刘哈哈关注了科研通微信公众号
7秒前
葱饼完成签到 ,获得积分10
8秒前
Anquan完成签到,获得积分10
8秒前
yudandan@CJLU发布了新的文献求助10
9秒前
鱼儿123完成签到,获得积分10
9秒前
端庄的访枫完成签到 ,获得积分10
10秒前
车秋寒发布了新的文献求助10
10秒前
10秒前
完美秋烟完成签到,获得积分10
11秒前
12秒前
14秒前
lee1992完成签到,获得积分10
14秒前
nextconnie发布了新的文献求助10
15秒前
nextconnie发布了新的文献求助10
15秒前
nextconnie发布了新的文献求助10
15秒前
CO2发布了新的文献求助10
16秒前
uniquedl完成签到 ,获得积分10
16秒前
nextconnie发布了新的文献求助10
16秒前
子伊完成签到 ,获得积分10
17秒前
20秒前
20秒前
20秒前
今后应助憨鬼憨切采纳,获得10
22秒前
22秒前
23秒前
greenPASS666完成签到,获得积分10
25秒前
KYN发布了新的文献求助10
25秒前
26秒前
meng发布了新的文献求助10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849