解吸
溶剂
吸收(声学)
化学
胺气处理
乙醇
核化学
分析化学(期刊)
有机化学
吸附
材料科学
复合材料
作者
Huancong Shi,Xiaofang Cheng,Jiacheng Peng,Hongqing Feng,Paitoon Tontiwachwuthikul,Jiaxing Hu
标识
DOI:10.1007/s11356-022-18792-0
摘要
The slow kinetics of CO2 absorption and high energy cost of CO2 desorption were the main challenges for CO2 capture technology. To overcome these drawbacks, a novel tri-solvent MEA (monoethanolamine) + EAE (2-(ethylamino)ethanol) + AMP (2-amino-2-methyl-1-propanol) was prepared at different amine concentrations of 0.1 ~ 0.5 + 2 + 2 mol/L. The CO2 absorption and desorption experiments were conducted on MEA + EAE + AMP and their precursor MEA + EAE to evaluate the absorption–desorption parameters. Results demonstrated that the optimized concentrations of the bi-blend were 0.2 + 2 mol/L for absorption and 0.4 + 2 mol/L for desorption. For the tri-solvent, the optimized concentration was 0.2 + 2 + 2 mol/L, consistently for both abs-desorption sides. Compared with tri-solvent of MEA + BEA + AMP, MEA + EAE + AMP proved better in absorption but poorer in desorption, while its CO2 loading of operation line was 0.35 ~ 0.70 mol/mol, higher than that of 0.30–0.60 mol/mol MEA + BEA + AMP. These results led to another tri-solvent candidate of amine solvents in an industrial pilot plant.
科研通智能强力驱动
Strongly Powered by AbleSci AI