化学
活性氧
EDDS公司
过氧化氢
羟基自由基
单线态氧
超氧化物
激进的
环境化学
氧气
臭氧
光化学
核化学
有机化学
生物化学
植物修复
酶
重金属
作者
Yunus Ahmed,Jiexi Zhong,Zhiguo Yuan,Jianhua Guo
标识
DOI:10.1016/j.jhazmat.2022.128408
摘要
Reactive oxygen species play a critical role in degrading chemical or biological contaminants in advanced oxidation processes. However, it is still not clear whether conventional Fenton and photo-Fenton processes generate different reactive oxygen species, respectively. This study revealed the roles of reactive oxygen species (ROS) for simultaneous removal of antibiotic resistant bacteria (ARB) and recalcitrant micropollutant using three processes, i.e., conventional Fenton, photo-Fenton, and ethylenediamine-N, N'-disuccinic acid (EDDS) modified photo-Fenton. Both chemical scavengers and electron paramagnetic resonance spectroscopy confirmed the generation of various ROS and their contribution towards bacterial inactivation and micropollutant degradation. Results showed ARB and carbamazepine (CBZ) elimination efficiency in the order: EDDS modified photo-Fenton process > photo-Fenton process > Fenton process. The ARB detection limit (6-log ARB) was observed within 10 min at lower doses of 0.1 mM Fe3+, 0.2 mM EDDS, and 0.5 mM hydrogen peroxide (H2O2). With the same dose, it took longer (60 min) to remove CBZ, while 2.5 times higher H2O2 dose (1.25 mM) removed around 99% of CBZ within 10 min treatment. The present study highlighted that the hydroxyl radical (HO•) plays a dominant role, while singlet oxygen (1O2) and superoxide radical anion (O2•-) exhibit moderate effects to remove the hazards. Our findings provide mechanistic insights into the role of various reactive oxygen species on degrading micropollutants and inactivating ARB.
科研通智能强力驱动
Strongly Powered by AbleSci AI