Clinical evaluation of two AI models for automated breast cancer plan generation

医学 放射治疗 核医学 医学物理学 放射治疗计划 乳腺癌 癌症 放射科 内科学
作者
Esther Kneepkens,Nienke Bakx,Maurice J.C. van der Sangen,Jacqueline Theuws,Peter-Paul van der Toorn,Dorien Rijkaart,Jorien van der Leer,Thérèse van Nunen,E. Hagelaar,Hanneke Bluemink,Coen W. Hurkmans
出处
期刊:Radiation Oncology [Springer Nature]
卷期号:17 (1)
标识
DOI:10.1186/s13014-022-01993-9
摘要

Abstract Background Artificial intelligence (AI) shows great potential to streamline the treatment planning process. However, its clinical adoption is slow due to the limited number of clinical evaluation studies and because often, the translation of the predicted dose distribution to a deliverable plan is lacking. This study evaluates two different, deliverable AI plans in terms of their clinical acceptability based on quantitative parameters and qualitative evaluation by four radiation oncologists. Methods For 20 left-sided node-negative breast cancer patients, treated with a prescribed dose of 40.05 Gy, using tangential beam intensity modulated radiotherapy, two model-based treatment plans were evaluated against the corresponding manual plan. The two models used were an in-house developed U-net model and a vendor-developed contextual atlas regression forest model (cARF). Radiation oncologists evaluated the clinical acceptability of each blinded plan and ranked plans according to preference. Furthermore, a comparison with the manual plan was made based on dose volume histogram parameters, clinical evaluation criteria and preparation time. Results The U-net model resulted in a higher average and maximum dose to the PTV (median difference 0.37 Gy and 0.47 Gy respectively) and a slightly higher mean heart dose (MHD) (0.01 Gy). The cARF model led to higher average and maximum doses to the PTV (0.30 and 0.39 Gy respectively) and a slightly higher MHD (0.02 Gy) and mean lung dose (MLD, 0.04 Gy). The maximum MHD/MLD difference was ≤ 0.5 Gy for both AI plans. Regardless of these dose differences, 90–95% of the AI plans were considered clinically acceptable versus 90% of the manual plans. Preferences varied between the radiation oncologists. Plan preparation time was comparable between the U-net model and the manual plan (287 s vs 253 s) while the cARF model took longer (471 s). When only considering user interaction, plan generation time was 121 s for the cARF model and 137 s for the U-net model. Conclusions Two AI models were used to generate deliverable plans for breast cancer patients, in a time-efficient manner, requiring minimal user interaction. Although the AI plans resulted in slightly higher doses overall, radiation oncologists considered 90–95% of the AI plans clinically acceptable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澄明的晨星完成签到,获得积分10
1秒前
七分饱完成签到,获得积分10
2秒前
犹豫寒烟完成签到,获得积分10
2秒前
HJK发布了新的文献求助10
3秒前
liulei完成签到 ,获得积分10
4秒前
kk完成签到,获得积分10
4秒前
初晨完成签到,获得积分10
4秒前
侯天宇完成签到,获得积分10
5秒前
15736519396完成签到,获得积分10
5秒前
hm完成签到,获得积分10
6秒前
搜集达人应助红绿灯的黄采纳,获得200
6秒前
8秒前
烂漫的豆芽完成签到,获得积分10
8秒前
对苏完成签到,获得积分10
8秒前
9秒前
HJK完成签到,获得积分10
9秒前
tianzml0举报火星上的凌柏求助涉嫌违规
13秒前
科研通AI2S应助漂亮的人生采纳,获得10
14秒前
阿a完成签到,获得积分10
15秒前
目土土完成签到,获得积分10
16秒前
19秒前
少年啊完成签到,获得积分10
19秒前
大模型应助qwt采纳,获得10
19秒前
19秒前
19秒前
20秒前
21秒前
端庄书雁发布了新的文献求助10
22秒前
打打应助纯真雁菱采纳,获得10
23秒前
23秒前
我住隔壁我姓王完成签到,获得积分10
24秒前
赧赧发布了新的文献求助10
24秒前
25秒前
25秒前
baibai完成签到,获得积分10
26秒前
清森发布了新的文献求助10
27秒前
田様应助初晨采纳,获得10
27秒前
Summer完成签到,获得积分10
27秒前
羊羊羊完成签到,获得积分10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187