亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical evaluation of two AI models for automated breast cancer plan generation

医学 放射治疗 核医学 医学物理学 放射治疗计划 乳腺癌 癌症 放射科 内科学
作者
Esther Kneepkens,Nienke Bakx,Maurice J.C. van der Sangen,Jacqueline Theuws,Peter-Paul van der Toorn,Dorien Rijkaart,Jorien van der Leer,Thérèse van Nunen,E. Hagelaar,Hanneke Bluemink,Coen W. Hurkmans
出处
期刊:Radiation Oncology [BioMed Central]
卷期号:17 (1)
标识
DOI:10.1186/s13014-022-01993-9
摘要

Abstract Background Artificial intelligence (AI) shows great potential to streamline the treatment planning process. However, its clinical adoption is slow due to the limited number of clinical evaluation studies and because often, the translation of the predicted dose distribution to a deliverable plan is lacking. This study evaluates two different, deliverable AI plans in terms of their clinical acceptability based on quantitative parameters and qualitative evaluation by four radiation oncologists. Methods For 20 left-sided node-negative breast cancer patients, treated with a prescribed dose of 40.05 Gy, using tangential beam intensity modulated radiotherapy, two model-based treatment plans were evaluated against the corresponding manual plan. The two models used were an in-house developed U-net model and a vendor-developed contextual atlas regression forest model (cARF). Radiation oncologists evaluated the clinical acceptability of each blinded plan and ranked plans according to preference. Furthermore, a comparison with the manual plan was made based on dose volume histogram parameters, clinical evaluation criteria and preparation time. Results The U-net model resulted in a higher average and maximum dose to the PTV (median difference 0.37 Gy and 0.47 Gy respectively) and a slightly higher mean heart dose (MHD) (0.01 Gy). The cARF model led to higher average and maximum doses to the PTV (0.30 and 0.39 Gy respectively) and a slightly higher MHD (0.02 Gy) and mean lung dose (MLD, 0.04 Gy). The maximum MHD/MLD difference was ≤ 0.5 Gy for both AI plans. Regardless of these dose differences, 90–95% of the AI plans were considered clinically acceptable versus 90% of the manual plans. Preferences varied between the radiation oncologists. Plan preparation time was comparable between the U-net model and the manual plan (287 s vs 253 s) while the cARF model took longer (471 s). When only considering user interaction, plan generation time was 121 s for the cARF model and 137 s for the U-net model. Conclusions Two AI models were used to generate deliverable plans for breast cancer patients, in a time-efficient manner, requiring minimal user interaction. Although the AI plans resulted in slightly higher doses overall, radiation oncologists considered 90–95% of the AI plans clinically acceptable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenwei完成签到,获得积分10
刚刚
LYL完成签到,获得积分10
1秒前
lulululululu完成签到,获得积分10
5秒前
7秒前
Frank发布了新的文献求助10
8秒前
10秒前
Warren发布了新的文献求助10
11秒前
长青完成签到,获得积分20
12秒前
三星导弹船完成签到,获得积分10
13秒前
十月完成签到 ,获得积分20
18秒前
酷波er应助三星导弹船采纳,获得10
26秒前
谨慎招牌发布了新的文献求助50
31秒前
tao完成签到 ,获得积分10
32秒前
醉书生完成签到,获得积分10
33秒前
Splaink完成签到 ,获得积分10
35秒前
40秒前
饱满若灵发布了新的文献求助10
43秒前
48秒前
炙热念双完成签到 ,获得积分10
50秒前
小太阳发布了新的文献求助10
51秒前
mirage应助天玄采纳,获得10
52秒前
顽强的小刘应助天玄采纳,获得10
52秒前
52秒前
顺心的定帮完成签到 ,获得积分10
53秒前
饱满若灵完成签到,获得积分10
53秒前
jojo完成签到 ,获得积分10
53秒前
芒果布丁完成签到 ,获得积分10
54秒前
囿于昼夜发布了新的文献求助10
56秒前
囿于昼夜完成签到,获得积分10
1分钟前
1分钟前
wen发布了新的文献求助10
1分钟前
wszzb完成签到,获得积分10
1分钟前
Hcc完成签到 ,获得积分10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得50
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674245
求助须知:如何正确求助?哪些是违规求助? 3229667
关于积分的说明 9786628
捐赠科研通 2940217
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372