A novel risk score model based on glycolysis‐related genes and a prognostic model for predicting overall survival of osteosarcoma patients

列线图 比例危险模型 肿瘤科 单变量 小桶 医学 骨肉瘤 内科学 接收机工作特性 生存分析 弗雷明翰风险评分 多元统计 生物信息学 基因 转录组 生物 病理 计算机科学 基因表达 遗传学 机器学习 疾病
作者
Wenhao Chen,Yuxiang Lin,Jianping Huang,Zhiyu Yan,Hua Cao
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:40 (10): 2372-2381 被引量:7
标识
DOI:10.1002/jor.25259
摘要

This study aims to construct a novel risk score model based on glycolysis-related genes in osteosarcoma and to build and validate a prognostic model for predicting overall survival of patients with osteosarcoma. The transcriptome data and corresponding clinical data of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) as the training set, and from Gene Expression Omnibus (GEO) database as the validation set. Univariate Cox regression analysis was used to screen the prognostic glycolysis-related genes. The risk coefficient of each glycolysis-related gene was calculated using LASSO regression analysis. Using the median risk score as the cut-off point, patients were divided into high-risk and low-risk groups. Kaplan-Meier survival analysis was used to determine whether there was a significant difference in the overall survival between the two groups. The nomogram was constructed according to the results of multivariate Cox regression. The C-index was calculated, the calibration chart, clinical decision curve and receiver operating characteristic curve were drawn to evaluate the predictive performance of the nomogram. We performed Gene Ontology and Kyoto encyclopedia of genes and genomics enrichment analysis to explore the potential mechanism of prognostic-related glycolysis genes in osteosarcoma. A total of 88 and 53 cases were obtained from the TCGA and GEO database, respectively. A total of 10 key glycolytic genes related to prognosis were screened out. The Kaplan-Meier survival curve revealed that the overall survival of the high-risk group was significantly shorter than that of the low-risk group. The C indices of the training set and the verification set were 0.882 and 0.828, respectively. Our findings will provide further understanding of clinical prognostic outcomes of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助天之骄子采纳,获得10
2秒前
雅居完成签到,获得积分10
2秒前
周周发布了新的文献求助10
3秒前
3秒前
4秒前
寒冷寒安发布了新的文献求助10
5秒前
无辜梨愁发布了新的文献求助10
6秒前
xcxc完成签到,获得积分10
6秒前
LZYC完成签到,获得积分20
7秒前
7秒前
8秒前
9秒前
10秒前
1223完成签到,获得积分10
10秒前
可爱的函函应助伍德采纳,获得10
11秒前
13秒前
14秒前
小宝发布了新的文献求助80
14秒前
15秒前
李爱国应助HD采纳,获得10
15秒前
qiuqiu完成签到,获得积分10
17秒前
ZD完成签到 ,获得积分10
17秒前
顾矜应助开心友儿采纳,获得10
17秒前
gujianhua发布了新的文献求助10
18秒前
屈苞络发布了新的文献求助10
19秒前
19秒前
哈哈哈哈哈完成签到,获得积分10
19秒前
20秒前
xdy发布了新的文献求助10
21秒前
脑洞疼应助靬七采纳,获得10
21秒前
leozhao发布了新的文献求助30
22秒前
22秒前
23秒前
田様应助nuo采纳,获得10
24秒前
24秒前
甜美小蕾发布了新的文献求助10
24秒前
现代书雪发布了新的文献求助10
25秒前
25秒前
动听的人英完成签到 ,获得积分10
25秒前
屈苞络完成签到 ,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226