A novel risk score model based on glycolysis‐related genes and a prognostic model for predicting overall survival of osteosarcoma patients

列线图 比例危险模型 肿瘤科 单变量 小桶 医学 骨肉瘤 内科学 接收机工作特性 生存分析 弗雷明翰风险评分 多元统计 生物信息学 基因 转录组 生物 病理 计算机科学 基因表达 遗传学 机器学习 疾病
作者
Wenhao Chen,Yuxiang Lin,Jianping Huang,Zhiyu Yan,Hua Cao
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:40 (10): 2372-2381 被引量:7
标识
DOI:10.1002/jor.25259
摘要

This study aims to construct a novel risk score model based on glycolysis-related genes in osteosarcoma and to build and validate a prognostic model for predicting overall survival of patients with osteosarcoma. The transcriptome data and corresponding clinical data of patients with osteosarcoma were obtained from The Cancer Genome Atlas (TCGA) as the training set, and from Gene Expression Omnibus (GEO) database as the validation set. Univariate Cox regression analysis was used to screen the prognostic glycolysis-related genes. The risk coefficient of each glycolysis-related gene was calculated using LASSO regression analysis. Using the median risk score as the cut-off point, patients were divided into high-risk and low-risk groups. Kaplan-Meier survival analysis was used to determine whether there was a significant difference in the overall survival between the two groups. The nomogram was constructed according to the results of multivariate Cox regression. The C-index was calculated, the calibration chart, clinical decision curve and receiver operating characteristic curve were drawn to evaluate the predictive performance of the nomogram. We performed Gene Ontology and Kyoto encyclopedia of genes and genomics enrichment analysis to explore the potential mechanism of prognostic-related glycolysis genes in osteosarcoma. A total of 88 and 53 cases were obtained from the TCGA and GEO database, respectively. A total of 10 key glycolytic genes related to prognosis were screened out. The Kaplan-Meier survival curve revealed that the overall survival of the high-risk group was significantly shorter than that of the low-risk group. The C indices of the training set and the verification set were 0.882 and 0.828, respectively. Our findings will provide further understanding of clinical prognostic outcomes of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wittig发布了新的文献求助10
刚刚
orixero应助myj采纳,获得10
刚刚
默默水之发布了新的文献求助10
1秒前
1秒前
帕尼灬尼发布了新的文献求助10
1秒前
CucRuotThua完成签到,获得积分10
2秒前
香蕉觅云应助热情铭采纳,获得10
2秒前
why完成签到,获得积分10
2秒前
2秒前
2秒前
03完成签到,获得积分10
3秒前
3秒前
小明完成签到,获得积分10
3秒前
HPP123完成签到,获得积分10
3秒前
3秒前
chenyunxia发布了新的文献求助10
4秒前
没写名字233完成签到 ,获得积分10
5秒前
5秒前
5秒前
孙刚发布了新的文献求助10
5秒前
ty发布了新的文献求助10
5秒前
xing525888完成签到,获得积分20
5秒前
十月完成签到 ,获得积分10
5秒前
桐桐应助blueming采纳,获得10
6秒前
6秒前
6秒前
wanci应助小怪兽采纳,获得10
7秒前
孙晓燕完成签到 ,获得积分10
8秒前
灰灰灰发布了新的文献求助10
9秒前
万能图书馆应助欢--采纳,获得10
9秒前
无私诗桃完成签到,获得积分10
9秒前
xing525888发布了新的文献求助10
9秒前
9秒前
wangjie发布了新的文献求助10
10秒前
64658应助聪慧冰淇淋采纳,获得10
10秒前
10秒前
10秒前
张秉环完成签到 ,获得积分10
11秒前
英吉利25发布了新的文献求助10
12秒前
传奇3应助caixiayin采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635