Sn4P3 Encapsulated in Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) as the Anode for Pseudocapacitive Lithium-Ion Storage

阳极 锂(药物) 材料科学 电化学 聚(3,4-亚乙基二氧噻吩) 碳纳米管 化学工程 重量分析 纳米技术 化学 电极 图层(电子) 有机化学 物理化学 佩多:嘘 内分泌学 工程类 医学
作者
Qian Zhao,Dan Zhao,Libo Feng,Yi Liu,Shouwu Guo
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (2): 2412-2420 被引量:7
标识
DOI:10.1021/acsaem.1c03902
摘要

Developing lithium-ion batteries (LIBs) with higher capacity is crucial for renewable energy utilization, such as large-scale energy storage systems, as well as portable and flexible electronics. As a conversion-reaction type LIB anode material, Sn4P3 could deliver a theoretical gravimetric capacity of 1132 mA h g–1. However, the usage of Sn4P3 in real LIB applications has been impeded by large volume expansion, low electronic conductivity, and limited Li+ charging speed upon cycling. Therefore, Sn4P3 is usually combined with carbon materials to improve its electrochemical performance. Herein, Sn4P3 nanoparticles were encapsulated inside the inner cavities of carbon nanotubes (CNTs) using a low-pressure vapor approach. This stemlike CNT network was further coated using poly(3,4-ethylenedioxythiophene) (PEDOT) as the electron-boosting buffer layer. In this special design, CNT/PEDOT bilayers could relieve the volume expansion of Sn4P3 during charge–discharge, as well as provide robust electron and ion transportation. As anode materials for LIBs, Sn4P3@CNT/PEDOT exhibits superior rate performances (reversible capability of 499 mA h g–1 at 2000 mA g–1) and superior long-term cycling stability (701 mA h g–1 after 500 cycles at 500 mA g–1 and 1208 mA h g–1 after 230 cycles at 100 mA g–1). In addition, a high pseudocapacitive contribution of 80% was delivered by Sn4P3@CNT/PEDOT, satisfying potential fast-charging demands. The present study provides a novel train of thought for improving the electrochemical performance of other conversion-reaction-type anode materials with large volume expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shawn发布了新的文献求助10
刚刚
Jiny发布了新的文献求助10
1秒前
2秒前
鱼鱼完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
5秒前
6秒前
所所应助迷路幻柏采纳,获得10
7秒前
姿势发布了新的文献求助50
7秒前
Yuxuan发布了新的文献求助10
8秒前
积极睫毛发布了新的文献求助10
8秒前
9秒前
美丽的听白完成签到,获得积分10
10秒前
11秒前
平淡夏云发布了新的文献求助30
13秒前
wang发布了新的文献求助10
14秒前
14秒前
15秒前
63完成签到,获得积分10
15秒前
15秒前
17秒前
充电宝应助xutong de采纳,获得10
18秒前
好运开开开完成签到 ,获得积分10
19秒前
Halari完成签到,获得积分20
19秒前
过过过发布了新的文献求助10
20秒前
Orange应助cij123采纳,获得10
21秒前
lvben发布了新的文献求助10
22秒前
松花酿酒完成签到 ,获得积分10
22秒前
辛勤雨泽完成签到,获得积分10
23秒前
26秒前
riti发布了新的文献求助10
26秒前
izumi完成签到,获得积分10
26秒前
26秒前
游悠悠完成签到,获得积分10
28秒前
过过过完成签到,获得积分10
28秒前
毛豆爸爸应助叮叮采纳,获得40
29秒前
科研通AI2S应助阔达摩托采纳,获得10
29秒前
zly完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323