ToxinPred2: an improved method for predicting toxicity of proteins

计算机科学 马修斯相关系数 机器学习 人工智能 相似性(几何) 数据挖掘 支持向量机 图像(数学)
作者
Neelam Sharma,Leimarembi Devi Naorem,Shreyansh Jain,Gajendra P. S. Raghava
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:62
标识
DOI:10.1093/bib/bbac174
摘要

Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine learning models have been implemented in the web server named 'ToxinPred2', which is available at https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting the toxicity of proteins regardless of their source of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
你hao完成签到,获得积分10
1秒前
wwx发布了新的文献求助10
1秒前
西红柿有股番茄味给西红柿有股番茄味的求助进行了留言
1秒前
斯文芷荷发布了新的文献求助10
2秒前
2秒前
恣意完成签到,获得积分10
3秒前
安凉关注了科研通微信公众号
3秒前
通~发布了新的文献求助10
4秒前
山乞凡完成签到 ,获得积分10
4秒前
4秒前
星辰大海应助粥粥采纳,获得10
5秒前
科研通AI5应助朴素小鸟胃采纳,获得10
5秒前
彭于晏应助拈花采纳,获得10
5秒前
NN发布了新的文献求助20
5秒前
烟雨行舟发布了新的文献求助10
6秒前
huang完成签到,获得积分20
6秒前
君莫笑完成签到 ,获得积分10
7秒前
赘婿应助ruby采纳,获得10
7秒前
爱科研的佳慧完成签到,获得积分10
8秒前
小只bb完成签到,获得积分10
8秒前
9秒前
Akim应助lxh2424采纳,获得10
9秒前
爆米花应助dingdong采纳,获得10
10秒前
xtqgyy驳回了大个应助
10秒前
赘婿应助斯文芷荷采纳,获得10
10秒前
kss完成签到,获得积分10
10秒前
11秒前
11秒前
Hupoo完成签到,获得积分10
11秒前
田様应助demonox采纳,获得10
11秒前
粥粥完成签到,获得积分10
11秒前
12秒前
光电很亮完成签到,获得积分10
12秒前
励志梦发布了新的文献求助10
12秒前
Fluoxetine完成签到,获得积分10
13秒前
13秒前
冰糖葫芦娃完成签到 ,获得积分10
14秒前
我是站长才怪完成签到,获得积分0
14秒前
魔幻灵槐发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794