ToxinPred2: an improved method for predicting toxicity of proteins

计算机科学 马修斯相关系数 机器学习 人工智能 相似性(几何) 数据挖掘 支持向量机 图像(数学)
作者
Neelam Sharma,Leimarembi Devi Naorem,Shreyansh Jain,Gajendra P. S. Raghava
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:62
标识
DOI:10.1093/bib/bbac174
摘要

Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine learning models have been implemented in the web server named 'ToxinPred2', which is available at https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting the toxicity of proteins regardless of their source of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
高兴灭龙发布了新的文献求助10
1秒前
可靠幼旋应助勤奋雅容采纳,获得10
1秒前
maox1aoxin应助爱笑盼曼采纳,获得30
3秒前
lx完成签到,获得积分10
4秒前
6秒前
ssc完成签到,获得积分20
7秒前
bazinga应助高兴灭龙采纳,获得10
9秒前
等于几都行完成签到 ,获得积分10
9秒前
思源应助Allen采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
啊圣诞袜应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
124应助科研通管家采纳,获得20
13秒前
iNk应助科研通管家采纳,获得10
13秒前
yangya应助科研通管家采纳,获得10
13秒前
啊圣诞袜应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
啊圣诞袜应助科研通管家采纳,获得10
13秒前
yangya应助科研通管家采纳,获得10
13秒前
13秒前
桦晔发布了新的文献求助10
15秒前
19秒前
漫漫楚威风完成签到,获得积分10
22秒前
z3Q应助南瓜气气采纳,获得10
23秒前
Owen应助猪猪爆采纳,获得10
24秒前
liyuxin完成签到,获得积分10
26秒前
29秒前
爆米花应助zhi-pengbao采纳,获得10
29秒前
miles发布了新的文献求助10
32秒前
777hhh发布了新的文献求助10
34秒前
39秒前
小二郎应助研友_想想采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490