已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ToxinPred2: an improved method for predicting toxicity of proteins

计算机科学 马修斯相关系数 机器学习 人工智能 相似性(几何) 数据挖掘 支持向量机 图像(数学)
作者
Neelam Sharma,Leimarembi Devi Naorem,Shipra Jain,Gajendra P. S. Raghava
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:285
标识
DOI:10.1093/bib/bbac174
摘要

Abstract Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine learning models have been implemented in the web server named ‘ToxinPred2’, which is available at https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting the toxicity of proteins regardless of their source of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助renovel采纳,获得10
刚刚
明朗发布了新的文献求助10
刚刚
1秒前
小蘑菇应助张晓娜采纳,获得10
1秒前
MIN发布了新的文献求助50
2秒前
2秒前
山复尔尔完成签到 ,获得积分10
3秒前
4秒前
今后应助小明采纳,获得10
5秒前
上官若男应助JaneChen采纳,获得10
5秒前
6秒前
7秒前
明朗完成签到,获得积分10
7秒前
烟花应助激情的逍遥采纳,获得10
8秒前
认真盼曼发布了新的文献求助10
8秒前
8秒前
10秒前
xuxin完成签到 ,获得积分10
10秒前
lin完成签到,获得积分10
10秒前
10秒前
小五完成签到,获得积分20
11秒前
青青河边草发布了新的文献求助100
12秒前
王讯发布了新的文献求助20
13秒前
abc完成签到 ,获得积分0
13秒前
科研通AI2S应助初夏采纳,获得10
13秒前
13秒前
13秒前
14秒前
16秒前
17秒前
orange发布了新的文献求助10
17秒前
fffff完成签到,获得积分10
18秒前
JaneChen发布了新的文献求助10
18秒前
19秒前
Alex完成签到,获得积分10
20秒前
疲惫发布了新的文献求助10
21秒前
毕业比耶完成签到,获得积分10
21秒前
21秒前
ll发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879