ToxinPred2: an improved method for predicting toxicity of proteins

计算机科学 马修斯相关系数 机器学习 人工智能 相似性(几何) 数据挖掘 支持向量机 图像(数学)
作者
Neelam Sharma,Leimarembi Devi Naorem,Shreyansh Jain,Gajendra P. S. Raghava
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:62
标识
DOI:10.1093/bib/bbac174
摘要

Proteins/peptides have shown to be promising therapeutic agents for a variety of diseases. However, toxicity is one of the obstacles in protein/peptide-based therapy. The current study describes a web-based tool, ToxinPred2, developed for predicting the toxicity of proteins. This is an update of ToxinPred developed mainly for predicting toxicity of peptides and small proteins. The method has been trained, tested and evaluated on three datasets curated from the recent release of the SwissProt. To provide unbiased evaluation, we performed internal validation on 80% of the data and external validation on the remaining 20% of data. We have implemented the following techniques for predicting protein toxicity; (i) Basic Local Alignment Search Tool-based similarity, (ii) Motif-EmeRging and with Classes-Identification-based motif search and (iii) Prediction models. Similarity and motif-based techniques achieved a high probability of correct prediction with poor sensitivity/coverage, whereas models based on machine-learning techniques achieved balance sensitivity and specificity with reasonably high accuracy. Finally, we developed a hybrid method that combined all three approaches and achieved a maximum area under receiver operating characteristic curve around 0.99 with Matthews correlation coefficient 0.91 on the validation dataset. In addition, we developed models on alternate and realistic datasets. The best machine learning models have been implemented in the web server named 'ToxinPred2', which is available at https://webs.iiitd.edu.in/raghava/toxinpred2/ and a standalone version at https://github.com/raghavagps/toxinpred2. This is a general method developed for predicting the toxicity of proteins regardless of their source of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助小鱼儿采纳,获得10
2秒前
年糕.完成签到,获得积分10
3秒前
3秒前
殷蝶完成签到,获得积分10
3秒前
CodeCraft应助西门博超采纳,获得10
3秒前
无谋完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Yuanyuan发布了新的文献求助10
6秒前
刀刀完成签到,获得积分10
7秒前
我是老大应助优美傲安采纳,获得10
8秒前
宇宙无敌完成签到 ,获得积分10
8秒前
好困发布了新的文献求助10
8秒前
Orange应助拾一采纳,获得10
8秒前
zhanghan完成签到,获得积分10
9秒前
9秒前
罗实发布了新的文献求助10
9秒前
9秒前
VLH发布了新的文献求助10
9秒前
袁睿韬应助阳光下的微风采纳,获得10
11秒前
han发布了新的文献求助10
12秒前
Jasper应助贪玩的德地采纳,获得10
13秒前
发10篇SCI发布了新的文献求助10
13秒前
14秒前
14秒前
Y0Y0完成签到 ,获得积分10
15秒前
追寻的怜容完成签到,获得积分10
15秒前
一只小鲨鱼完成签到,获得积分10
16秒前
酷波er应助忧虑的初晴采纳,获得10
16秒前
18秒前
飞云发布了新的文献求助10
19秒前
烤匠喊你吃鱼关注了科研通微信公众号
19秒前
你不知道完成签到 ,获得积分10
20秒前
20秒前
拾一发布了新的文献求助10
20秒前
jjy完成签到,获得积分10
20秒前
20秒前
行歌发布了新的文献求助10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352