亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based radiomics analysis in the prediction of response to neoadjuvant chemotherapy in locally advanced gastric cancer: A dual-center study

医学 无线电技术 中心(范畴论) 对偶(语法数字) 化疗 癌症 肿瘤科 内科学 新辅助治疗 放射科 乳腺癌 艺术 文学类 化学 结晶学
作者
Ruirui Song,Yanfen Cui,Jialiang Ren,Junjie Zhang,Zhao Yang,Dandan Li,Zhenhui Li,Xiaotang Yang
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:171: 155-163 被引量:21
标识
DOI:10.1016/j.radonc.2022.04.023
摘要

To investigate the ability of the CT-based radiomics models for pretreatment prediction of the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced gastric cancer (LAGC).This retrospective analysis included 279 consecutive LAGC patients from center I (training cohort, n = 196; internal validation cohort, n = 83) who were examined by contrast-enhanced CT before treatment and 211 consecutive patients from center II who were recruited as an external validation cohort. A total of 102 features were extracted from the portal venous phase CT images, and feature selection was further subjected to three-step procedures. Next, five classifications, including Logistic Regression (LR), Naive Bayes, Random forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB) algorithms, were applied to construct radiomics models for predicting the good-responder (GR) to NAC in the training cohort. The prediction performances were evaluated using ROC and decision curve analysis (DCA).No statistically significant difference was detected for all clinicopathological characteristics. Additionally, allsix key features were significantly different between GR and poor-responder (PR). Compared to models from other classifiers, the model obtained with XGB showed promising prediction performance with the highest AUC of 0.790(95%CI: 0.700-0.880) in the training cohort. The corresponding AUCs were 0.784(95%CI, 0.659-0.908) and 0.803(95%CI, 0.717-0.888) in the internal and external validation cohorts, respectively. DCA confirmed the clinical utility.The proposed pretreatment CT-based radiomics models revealed good performances in predicting response to NAC and thus may be used to improve clinical treatment in LAGC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
29秒前
35秒前
略略略发布了新的文献求助10
35秒前
小蘑菇应助略略略采纳,获得10
51秒前
达克男孩完成签到,获得积分10
59秒前
达克男孩发布了新的文献求助10
1分钟前
1分钟前
1分钟前
宋小葵发布了新的文献求助20
1分钟前
1分钟前
宋小葵发布了新的文献求助10
1分钟前
1分钟前
大个应助被人强迫的采纳,获得10
2分钟前
岁岁完成签到 ,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助嘟嘟嘟嘟采纳,获得10
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
嘟嘟嘟嘟发布了新的文献求助10
3分钟前
3分钟前
嘟嘟嘟嘟完成签到,获得积分10
3分钟前
李凤凤完成签到 ,获得积分10
3分钟前
我是老大应助zkexuan采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
zkexuan发布了新的文献求助10
4分钟前
子平完成签到 ,获得积分10
4分钟前
5分钟前
852应助过时的笙采纳,获得10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015697
关于积分的说明 8871632
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482256
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951