硫代硫酸盐
反硝化
硫黄
化学
硝酸盐
硫杆菌
环境化学
无机化学
硫循环
硫化物
氮气
有机化学
作者
Shengjie Li,Zhuo Jiang,Guodong Ji
标识
DOI:10.1016/j.envpol.2022.119322
摘要
The fate of nitrogen is controlled by the competition between nitrate reduction pathways. Denitrification removes nitrogen in the system to the atmosphere, whereas dissimilatory nitrate reduction to ammonia (DNRA) retains nitrate in the form of ammonia. Different microbes specialize in the oxidation of different electron donors, thus electron donors might influence the outcomes of the competition. Here, we investigated the fate of nitrate with five forms of sulfur as electron donors. Chemoautotrophic nitrate reduction did not continue after the passages of the enrichments with sulfide, sulfite and pyrite. Nitrate reduction rate was the highest in the enrichment with thiosulfate. Denitrification was stimulated and no DNRA was observed with thiosulfate, while both denitrification and DNRA were stimulated with elemental sulfur. Metagenomes of the enrichments were assembled and binned into ten genomes. The enriched populations with thiosulfate included Thiobacillus, Lentimicrobium, Sulfurovum and Hydrogenophaga, all of which contained genes involved in sulfur oxidation. Elemental sulfur-based DNRA was performed by Thiobacillus (with NrfA and NirB) and Nocardioides (with only NirB). Our study established a link between sulfur sources, nitrate reduction pathways and microbial populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI