Construction of a small sample dataset and identification of Pitaya trees (Selenicereus) based on UAV image on close-range acquisition

人工智能 计算机科学 样品(材料) 航程(航空) 决策树 树(集合论) 科恩卡帕 遥感 环境科学 模式识别(心理学) 数学 地质学 机器学习 数学分析 材料科学 化学 复合材料 色谱法
作者
Qianxia Li,Lihui Yan,Denghong Huang,Zhongfa Zhou,Yang Zhang,Dongna Xiao
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (02) 被引量:4
标识
DOI:10.1117/1.jrs.16.024502
摘要

Rapid and accurate crop information extraction is important for detailed agricultural management and efficient yield estimation. However, the natural environment of the Karst Plateau in southwest China is fragile, the ground surface is broken, and the weather is complex and cloudy, making it difficult to obtain high-quality crop samples for crop information extraction in this complex environment. We obtained images of Pitaya trees from plateau mountain environments using DJI Mavic 2 Pro UAV, constructed a small UAV close-range acquisition sample dataset, which included initial, supplementary, and augmented datasets, covering samples in complex natural scenes such as twining vines, weed and tree cover, blurred images, and shadows. We studied the influence of complex scenes on the extraction accuracy of Pitaya trees using the U-Net model to accurately delineate Pitaya trees in complex UAV images. The results show: (1) the U-Net model trained by the augmented dataset had the highest recognition precision of 99.20% for Pitaya trees, F1-score of 96.66%, and Kappa coefficient of 0.91. (2) The number of samples and the complexity of land types had strong impact on the recognition accuracy. From 200 to 21,593 samples, the accuracy of the recognition results, F1-score and Kappa coefficient increased by 17.47%, 17.95%, and 0.26%, respectively. Moreover, the missed detection rate significantly decreased (18.27% to 0.80%), the false alarm rate (5.36% to 1.04%). (3) When the sample types were increased from 1 to 10, the learning of sample features by the U-Net model, including shadows, blurred images, and twining vines, was strengthened. This enhanced the robustness and generalization ability of the model. The small sample dataset in this study meets the requirements of identifying and extracting information for Pitaya trees from the background of the rugged terrain and complex features in plateau and mountain areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大模型应助hxnz2001采纳,获得10
2秒前
miaomiao发布了新的文献求助10
2秒前
sevenvictory应助红柚采纳,获得30
3秒前
3秒前
4秒前
5秒前
6秒前
没药完成签到,获得积分10
6秒前
李健应助科研通管家采纳,获得10
6秒前
小郭应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
yu关注了科研通微信公众号
6秒前
山复尔尔应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得20
7秒前
7秒前
小郭应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420