亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of a small sample dataset and identification of Pitaya trees (Selenicereus) based on UAV image on close-range acquisition

人工智能 计算机科学 样品(材料) 航程(航空) 决策树 树(集合论) 科恩卡帕 遥感 环境科学 模式识别(心理学) 数学 地质学 机器学习 数学分析 材料科学 化学 复合材料 色谱法
作者
Qianxia Li,Lihui Yan,Denghong Huang,Zhongfa Zhou,Yang Zhang,Dongna Xiao
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:16 (02) 被引量:4
标识
DOI:10.1117/1.jrs.16.024502
摘要

Rapid and accurate crop information extraction is important for detailed agricultural management and efficient yield estimation. However, the natural environment of the Karst Plateau in southwest China is fragile, the ground surface is broken, and the weather is complex and cloudy, making it difficult to obtain high-quality crop samples for crop information extraction in this complex environment. We obtained images of Pitaya trees from plateau mountain environments using DJI Mavic 2 Pro UAV, constructed a small UAV close-range acquisition sample dataset, which included initial, supplementary, and augmented datasets, covering samples in complex natural scenes such as twining vines, weed and tree cover, blurred images, and shadows. We studied the influence of complex scenes on the extraction accuracy of Pitaya trees using the U-Net model to accurately delineate Pitaya trees in complex UAV images. The results show: (1) the U-Net model trained by the augmented dataset had the highest recognition precision of 99.20% for Pitaya trees, F1-score of 96.66%, and Kappa coefficient of 0.91. (2) The number of samples and the complexity of land types had strong impact on the recognition accuracy. From 200 to 21,593 samples, the accuracy of the recognition results, F1-score and Kappa coefficient increased by 17.47%, 17.95%, and 0.26%, respectively. Moreover, the missed detection rate significantly decreased (18.27% to 0.80%), the false alarm rate (5.36% to 1.04%). (3) When the sample types were increased from 1 to 10, the learning of sample features by the U-Net model, including shadows, blurred images, and twining vines, was strengthened. This enhanced the robustness and generalization ability of the model. The small sample dataset in this study meets the requirements of identifying and extracting information for Pitaya trees from the background of the rugged terrain and complex features in plateau and mountain areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助ceeray23采纳,获得20
9秒前
maprang完成签到 ,获得积分10
57秒前
Ava应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Doctor.TANG完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
黄果兰完成签到,获得积分10
5分钟前
执着绿草完成签到 ,获得积分10
5分钟前
miki完成签到 ,获得积分10
6分钟前
lululemontree发布了新的文献求助10
6分钟前
6分钟前
6分钟前
lululemontree关注了科研通微信公众号
6分钟前
7分钟前
7分钟前
小妮子完成签到,获得积分10
7分钟前
大熊完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
深情的羞花完成签到 ,获得积分10
8分钟前
yyuchen完成签到,获得积分20
8分钟前
温婉的三娘完成签到,获得积分20
8分钟前
8分钟前
9分钟前
9分钟前
yyuchen发布了新的文献求助20
9分钟前
wanci应助科研通管家采纳,获得10
9分钟前
CodeCraft应助leilei采纳,获得10
9分钟前
月军完成签到,获得积分10
9分钟前
9527完成签到,获得积分10
10分钟前
10分钟前
leilei发布了新的文献求助10
10分钟前
77完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
大刘完成签到,获得积分10
11分钟前
大刘发布了新的文献求助30
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771538
捐赠科研通 4613710
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523