TSMAE: A Novel Anomaly Detection Approach for Internet of Things Time Series Data Using Memory-Augmented Autoencoder

自编码 计算机科学 异常检测 外部数据表示 人工智能 数据挖掘 特征向量 特征(语言学) 解码方法 一般化 模式识别(心理学) 机器学习 深度学习 算法 数学 数学分析 哲学 语言学
作者
Honghao Gao,Binyang Qiu,Ramón J. Durán Barroso,Walayat Hussain,Yueshen Xu,Xinheng Wang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2978-2990 被引量:136
标识
DOI:10.1109/tnse.2022.3163144
摘要

With the development of communication, the Internet of Things (IoT) has been widely deployed and used in industrial manufacturing, intelligent transportation, and healthcare systems. The time-series feature of the IoT increases the data density and the data dimension, where anomaly detection is important to ensure hardware and software security. However, for the general anomaly detection methods, the anomaly may be well-reconstructed with tiny differences that are hard to discover. Measuring model complexity and the dataset feature space is a long and inefficient process. In this paper, we propose a memory-augmented autoencoder approach for detecting anomalies in IoT data, which is unsupervised, end-to-end, and not easily overgeneralized. First, a memory mechanism is introduced to suppress the generalization ability of the model, and a memory-augmented time-series autoencoder (TSMAE) is designed. Each memory item is encoded and recombined according to the similarity with the latent representation. Then, the new representation is decoded to generate the reconstructed sample, based on which the anomaly score can be obtained. Second, the addressing vector tends to be sparse by adding penalties and rectification functions to the loss. Memory modules are encouraged to extract typical normal patterns, thus inhibiting model generalization ability. Long short-term memory (LSTM) is introduced for decoding and encoding time-series data to obtain the contextual characteristics of time-series data. Finally, through experiments on the ECG and Wafer datasets, the validity of the TSMAE is verified. The rationality of the hyperparameter setting is discussed by visualizing the memory module addressing vector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chrissylaiiii完成签到,获得积分10
2秒前
科研通AI2S应助鲤鱼白玉采纳,获得10
3秒前
3秒前
不安慕蕊发布了新的文献求助10
4秒前
5秒前
满意的柏柳完成签到,获得积分10
6秒前
乐乐应助854fycchjh采纳,获得10
6秒前
orixero应助chrissylaiiii采纳,获得10
7秒前
7秒前
8秒前
舒心的怡完成签到,获得积分10
8秒前
lxw完成签到,获得积分10
9秒前
顾矜应助严笑容采纳,获得30
9秒前
psm完成签到 ,获得积分10
10秒前
fengbeing完成签到,获得积分10
10秒前
wxwang完成签到,获得积分10
10秒前
舒心的怡发布了新的文献求助10
11秒前
11秒前
伊酒应助mmyhn采纳,获得10
12秒前
斯文若魔完成签到,获得积分10
13秒前
邺昀完成签到,获得积分10
14秒前
干净冰露完成签到,获得积分10
15秒前
东如海发布了新的文献求助10
15秒前
Zl0911完成签到,获得积分10
15秒前
无奈的馒头完成签到,获得积分10
16秒前
科研通AI5应助Xu采纳,获得10
17秒前
17秒前
田様应助cai采纳,获得10
20秒前
三分糖完成签到,获得积分10
20秒前
22秒前
23秒前
大模型应助4433采纳,获得10
23秒前
HIMINNN完成签到,获得积分10
23秒前
东如海完成签到,获得积分10
24秒前
世间再无延毕完成签到,获得积分10
24秒前
24秒前
raycee完成签到,获得积分20
25秒前
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794