Multi-attention graph neural networks for city-wide bus travel time estimation using limited data

计算机科学 图形 人工神经网络 旅行时间 估计 人工智能 机器学习 数据挖掘 理论计算机科学 运输工程 工程类 经济 管理
作者
Jiaman Ma,Jeffrey Chan,Sutharshan Rajasegarar,Christopher Leckie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117057-117057 被引量:18
标识
DOI:10.1016/j.eswa.2022.117057
摘要

An important factor that discourages patrons from using bus systems is the long and uncertain waiting times. Therefore, accurate bus travel time prediction is important to improve the serviceability of bus transport systems. Many researchers have proposed machine learning and deep learning-based models for bus travel time predictions. However, most of the existing models focus on predicting the travel times using complete data. Moreover, with the dramatically increasing population, bus systems also expand and upgrade their routes to provide improved coverage. Consequently, predicting the routes with sparse or no historical records becomes vital in this situation, and has not been well addressed in the literature. In particular, the challenges involved in this prediction include discovering routes with sparse records, discovering newly deployed routes, and finding the roads that need new routes. In order to address these, we propose a M ulti- A ttention G raph neural network for city-wide bus travel time estimation (TTE), especially for the routes with limited data, called MAGTTE . In particular, we first represent the bus network using a novel multi-view graph, which can automatically extract the stations and paths as nodes and weighted edges of bus graphs, respectively. Using inductive learning on dynamic graphs, we propose a multi-attention graph neural network with novel masks to capture the global and local spatial dependencies using limited data, and formulate a framework with LSTM and transformer layers to learn short and long-term temporal dependencies. Evaluation of our model on a real-world bus dataset from Xi’an, China demonstrates that the proposed model is superior compared to nine baselines, and robust to highly sparse data. • First time to achieve city-wide bus travel time prediction with limited data. • First time to build bus networks based on a graph for travel time prediction. • A spatial–temporal graph attention network to learn travel patterns from each other. • Test results show the model can accurately predict bus travel time with limited data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助局长采纳,获得20
刚刚
没有昵称完成签到 ,获得积分10
刚刚
茨橙完成签到,获得积分10
1秒前
1秒前
LKX心完成签到 ,获得积分10
1秒前
浮游应助linda采纳,获得10
2秒前
2秒前
Akim应助ww采纳,获得10
2秒前
小李发布了新的文献求助10
2秒前
2秒前
sube完成签到,获得积分20
3秒前
4秒前
Hello应助刘若鑫采纳,获得10
4秒前
4秒前
热心树叶应助小巧的柚子采纳,获得50
4秒前
5秒前
5秒前
sssa发布了新的文献求助10
5秒前
123完成签到,获得积分10
7秒前
7秒前
风趣小蜜蜂完成签到 ,获得积分10
7秒前
7秒前
GodZ发布了新的文献求助10
7秒前
zp发布了新的文献求助10
8秒前
彭仲康完成签到,获得积分10
8秒前
从容仙人完成签到,获得积分10
8秒前
开心的渊思完成签到 ,获得积分10
9秒前
9秒前
9秒前
ohh发布了新的文献求助10
10秒前
10秒前
10秒前
瓶子君152完成签到,获得积分10
11秒前
11秒前
今后应助山药采纳,获得30
11秒前
陈橙橙完成签到,获得积分10
12秒前
ccc完成签到,获得积分10
12秒前
12秒前
12秒前
li完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578302
求助须知:如何正确求助?哪些是违规求助? 4663150
关于积分的说明 14745051
捐赠科研通 4603900
什么是DOI,文献DOI怎么找? 2526774
邀请新用户注册赠送积分活动 1496369
关于科研通互助平台的介绍 1465712