已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-attention graph neural networks for city-wide bus travel time estimation using limited data

计算机科学 图形 人工神经网络 旅行时间 估计 人工智能 机器学习 数据挖掘 理论计算机科学 运输工程 工程类 经济 管理
作者
Jiaman Ma,Jeffrey Chan,Sutharshan Rajasegarar,Christopher Leckie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117057-117057 被引量:18
标识
DOI:10.1016/j.eswa.2022.117057
摘要

An important factor that discourages patrons from using bus systems is the long and uncertain waiting times. Therefore, accurate bus travel time prediction is important to improve the serviceability of bus transport systems. Many researchers have proposed machine learning and deep learning-based models for bus travel time predictions. However, most of the existing models focus on predicting the travel times using complete data. Moreover, with the dramatically increasing population, bus systems also expand and upgrade their routes to provide improved coverage. Consequently, predicting the routes with sparse or no historical records becomes vital in this situation, and has not been well addressed in the literature. In particular, the challenges involved in this prediction include discovering routes with sparse records, discovering newly deployed routes, and finding the roads that need new routes. In order to address these, we propose a M ulti- A ttention G raph neural network for city-wide bus travel time estimation (TTE), especially for the routes with limited data, called MAGTTE . In particular, we first represent the bus network using a novel multi-view graph, which can automatically extract the stations and paths as nodes and weighted edges of bus graphs, respectively. Using inductive learning on dynamic graphs, we propose a multi-attention graph neural network with novel masks to capture the global and local spatial dependencies using limited data, and formulate a framework with LSTM and transformer layers to learn short and long-term temporal dependencies. Evaluation of our model on a real-world bus dataset from Xi’an, China demonstrates that the proposed model is superior compared to nine baselines, and robust to highly sparse data. • First time to achieve city-wide bus travel time prediction with limited data. • First time to build bus networks based on a graph for travel time prediction. • A spatial–temporal graph attention network to learn travel patterns from each other. • Test results show the model can accurately predict bus travel time with limited data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助Ollm采纳,获得10
4秒前
Jonathan完成签到,获得积分10
4秒前
hahahan完成签到 ,获得积分10
4秒前
6秒前
Aobo发布了新的文献求助10
6秒前
Owen应助小年小少采纳,获得10
6秒前
8秒前
Mogao完成签到,获得积分20
10秒前
11秒前
dabao完成签到,获得积分10
12秒前
12秒前
13秒前
陈晓明发布了新的文献求助20
13秒前
Bella发布了新的文献求助10
14秒前
14秒前
TiY发布了新的文献求助10
15秒前
健康发布了新的文献求助10
15秒前
充电宝应助Cindy采纳,获得10
17秒前
George完成签到,获得积分10
18秒前
钮祜禄萱完成签到 ,获得积分10
19秒前
云轰2857发布了新的文献求助10
19秒前
William_l_c完成签到,获得积分10
20秒前
涵涵涵hh完成签到 ,获得积分10
30秒前
坚强觅珍完成签到 ,获得积分10
30秒前
夏郁完成签到 ,获得积分10
31秒前
汤汤完成签到 ,获得积分10
31秒前
彼翎完成签到,获得积分10
31秒前
风起云涌完成签到,获得积分10
34秒前
35秒前
啥文献找不到完成签到 ,获得积分10
40秒前
英姑应助单薄青亦采纳,获得10
43秒前
DrSong完成签到,获得积分10
44秒前
domingo完成签到,获得积分10
47秒前
Jasper应助小丸子采纳,获得10
48秒前
TiY完成签到,获得积分10
49秒前
49秒前
矮小的祥发布了新的文献求助10
50秒前
50秒前
chrysophoron给chrysophoron的求助进行了留言
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236