清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-attention graph neural networks for city-wide bus travel time estimation using limited data

计算机科学 图形 人工神经网络 旅行时间 估计 人工智能 机器学习 数据挖掘 理论计算机科学 运输工程 工程类 经济 管理
作者
Jiaman Ma,Jeffrey Chan,Sutharshan Rajasegarar,Christopher Leckie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117057-117057 被引量:18
标识
DOI:10.1016/j.eswa.2022.117057
摘要

An important factor that discourages patrons from using bus systems is the long and uncertain waiting times. Therefore, accurate bus travel time prediction is important to improve the serviceability of bus transport systems. Many researchers have proposed machine learning and deep learning-based models for bus travel time predictions. However, most of the existing models focus on predicting the travel times using complete data. Moreover, with the dramatically increasing population, bus systems also expand and upgrade their routes to provide improved coverage. Consequently, predicting the routes with sparse or no historical records becomes vital in this situation, and has not been well addressed in the literature. In particular, the challenges involved in this prediction include discovering routes with sparse records, discovering newly deployed routes, and finding the roads that need new routes. In order to address these, we propose a M ulti- A ttention G raph neural network for city-wide bus travel time estimation (TTE), especially for the routes with limited data, called MAGTTE . In particular, we first represent the bus network using a novel multi-view graph, which can automatically extract the stations and paths as nodes and weighted edges of bus graphs, respectively. Using inductive learning on dynamic graphs, we propose a multi-attention graph neural network with novel masks to capture the global and local spatial dependencies using limited data, and formulate a framework with LSTM and transformer layers to learn short and long-term temporal dependencies. Evaluation of our model on a real-world bus dataset from Xi’an, China demonstrates that the proposed model is superior compared to nine baselines, and robust to highly sparse data. • First time to achieve city-wide bus travel time prediction with limited data. • First time to build bus networks based on a graph for travel time prediction. • A spatial–temporal graph attention network to learn travel patterns from each other. • Test results show the model can accurately predict bus travel time with limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Mannone发布了新的文献求助10
13秒前
Owen应助小化采纳,获得10
15秒前
luffy189完成签到 ,获得积分10
19秒前
现代青枫应助Mannone采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
26秒前
机灵笑容发布了新的文献求助60
28秒前
月军完成签到,获得积分10
42秒前
李健应助去去去去采纳,获得30
52秒前
大水完成签到 ,获得积分10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
现代青枫应助fredericev采纳,获得10
1分钟前
机灵笑容完成签到,获得积分10
1分钟前
1分钟前
菠萝谷波完成签到 ,获得积分10
1分钟前
KKDDBB完成签到,获得积分10
1分钟前
1分钟前
秋夜临完成签到,获得积分10
1分钟前
Java完成签到,获得积分10
1分钟前
去去去去发布了新的文献求助30
1分钟前
稳重傲晴完成签到 ,获得积分10
2分钟前
iwsaml发布了新的文献求助10
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
圈圈完成签到,获得积分10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
小强完成签到 ,获得积分10
2分钟前
傻傻的访天完成签到,获得积分10
2分钟前
iwsaml完成签到,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
林利芳完成签到 ,获得积分10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
3分钟前
xiaoheshan发布了新的文献求助20
4分钟前
小化发布了新的文献求助10
4分钟前
木林森江完成签到 ,获得积分10
4分钟前
无辜的行云完成签到 ,获得积分0
4分钟前
贰鸟应助科研通管家采纳,获得20
4分钟前
贰鸟应助科研通管家采纳,获得20
4分钟前
贰鸟应助科研通管家采纳,获得20
4分钟前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179999
求助须知:如何正确求助?哪些是违规求助? 2830380
关于积分的说明 7976509
捐赠科研通 2491938
什么是DOI,文献DOI怎么找? 1329096
科研通“疑难数据库(出版商)”最低求助积分说明 635652
版权声明 602954