Multi-attention graph neural networks for city-wide bus travel time estimation using limited data

计算机科学 图形 人工神经网络 旅行时间 估计 人工智能 机器学习 数据挖掘 理论计算机科学 运输工程 工程类 经济 管理
作者
Jiaman Ma,Jeffrey Chan,Sutharshan Rajasegarar,Christopher Leckie
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:202: 117057-117057 被引量:18
标识
DOI:10.1016/j.eswa.2022.117057
摘要

An important factor that discourages patrons from using bus systems is the long and uncertain waiting times. Therefore, accurate bus travel time prediction is important to improve the serviceability of bus transport systems. Many researchers have proposed machine learning and deep learning-based models for bus travel time predictions. However, most of the existing models focus on predicting the travel times using complete data. Moreover, with the dramatically increasing population, bus systems also expand and upgrade their routes to provide improved coverage. Consequently, predicting the routes with sparse or no historical records becomes vital in this situation, and has not been well addressed in the literature. In particular, the challenges involved in this prediction include discovering routes with sparse records, discovering newly deployed routes, and finding the roads that need new routes. In order to address these, we propose a M ulti- A ttention G raph neural network for city-wide bus travel time estimation (TTE), especially for the routes with limited data, called MAGTTE . In particular, we first represent the bus network using a novel multi-view graph, which can automatically extract the stations and paths as nodes and weighted edges of bus graphs, respectively. Using inductive learning on dynamic graphs, we propose a multi-attention graph neural network with novel masks to capture the global and local spatial dependencies using limited data, and formulate a framework with LSTM and transformer layers to learn short and long-term temporal dependencies. Evaluation of our model on a real-world bus dataset from Xi’an, China demonstrates that the proposed model is superior compared to nine baselines, and robust to highly sparse data. • First time to achieve city-wide bus travel time prediction with limited data. • First time to build bus networks based on a graph for travel time prediction. • A spatial–temporal graph attention network to learn travel patterns from each other. • Test results show the model can accurately predict bus travel time with limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
Hello应助科研顺利采纳,获得10
2秒前
哈哈哈发布了新的文献求助10
2秒前
阿德利企鹅完成签到 ,获得积分10
3秒前
lv发布了新的文献求助10
4秒前
LaTeXer应助旅行者采纳,获得50
4秒前
慕青应助无误采纳,获得10
4秒前
第八维发布了新的文献求助10
5秒前
5秒前
6秒前
Owen应助满眼星辰采纳,获得10
6秒前
6秒前
SYLH应助逸yi采纳,获得10
7秒前
安详凡完成签到 ,获得积分10
9秒前
小白鸽发布了新的文献求助10
10秒前
yc完成签到,获得积分10
12秒前
12秒前
Lucas应助xuan采纳,获得10
13秒前
shugefuhe发布了新的文献求助10
13秒前
14秒前
ss发布了新的文献求助10
15秒前
汉堡包应助阔达的以丹采纳,获得10
15秒前
16秒前
16秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得100
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
CR7应助科研通管家采纳,获得20
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
小钱钱发布了新的文献求助10
18秒前
Zgrey完成签到,获得积分10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182