亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-attention graph neural networks for city-wide bus travel time estimation using limited data

计算机科学 图形 人工神经网络 旅行时间 估计 人工智能 机器学习 数据挖掘 理论计算机科学 运输工程 工程类 经济 管理
作者
Jiaman Ma,Jeffrey Chan,Sutharshan Rajasegarar,Christopher Leckie
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117057-117057 被引量:18
标识
DOI:10.1016/j.eswa.2022.117057
摘要

An important factor that discourages patrons from using bus systems is the long and uncertain waiting times. Therefore, accurate bus travel time prediction is important to improve the serviceability of bus transport systems. Many researchers have proposed machine learning and deep learning-based models for bus travel time predictions. However, most of the existing models focus on predicting the travel times using complete data. Moreover, with the dramatically increasing population, bus systems also expand and upgrade their routes to provide improved coverage. Consequently, predicting the routes with sparse or no historical records becomes vital in this situation, and has not been well addressed in the literature. In particular, the challenges involved in this prediction include discovering routes with sparse records, discovering newly deployed routes, and finding the roads that need new routes. In order to address these, we propose a M ulti- A ttention G raph neural network for city-wide bus travel time estimation (TTE), especially for the routes with limited data, called MAGTTE . In particular, we first represent the bus network using a novel multi-view graph, which can automatically extract the stations and paths as nodes and weighted edges of bus graphs, respectively. Using inductive learning on dynamic graphs, we propose a multi-attention graph neural network with novel masks to capture the global and local spatial dependencies using limited data, and formulate a framework with LSTM and transformer layers to learn short and long-term temporal dependencies. Evaluation of our model on a real-world bus dataset from Xi’an, China demonstrates that the proposed model is superior compared to nine baselines, and robust to highly sparse data. • First time to achieve city-wide bus travel time prediction with limited data. • First time to build bus networks based on a graph for travel time prediction. • A spatial–temporal graph attention network to learn travel patterns from each other. • Test results show the model can accurately predict bus travel time with limited data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只只完成签到,获得积分10
3秒前
9秒前
led灯泡完成签到 ,获得积分10
9秒前
15秒前
18秒前
34秒前
米奇妙妙屋小米完成签到 ,获得积分10
38秒前
和风完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
luanzhaohui完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
我的娃完成签到,获得积分20
1分钟前
我的娃发布了新的文献求助10
1分钟前
开放千琴完成签到 ,获得积分10
1分钟前
1分钟前
林妖妖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
小蝶完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
小贾发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
cm发布了新的文献求助10
2分钟前
123完成签到 ,获得积分10
2分钟前
百里守约完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
隐形曼青应助cm采纳,获得10
2分钟前
2分钟前
脑洞疼应助inRe采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628101
求助须知:如何正确求助?哪些是违规求助? 4715567
关于积分的说明 14963616
捐赠科研通 4785765
什么是DOI,文献DOI怎么找? 2555328
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477166