高光谱成像
像素
医学
模式识别(心理学)
相似性(几何)
人工智能
数据立方体
图像(数学)
立方体(代数)
核医学
计算机科学
数学
组合数学
数据挖掘
出处
期刊:Burns
[Elsevier]
日期:2022-04-27
卷期号:48 (5): 1266-1267
被引量:2
标识
DOI:10.1016/j.burns.2022.04.021
摘要
Background and objective Early diagnosis of chronic myeloid leukemia (CML) is important for effective treatment. The high spectral and spatial resolution of hyperspectral cellular or tissue images coupled with image analysis algorithms may provide avenues to detect and diagnose diseases early. Many algorithms have been used to analyze medical hyperspectral image data, each having their own strengths and short-comings. We present a novel 3-Dimensional Spectral Gradient Mapping (3-D SGM) method to analyze hyperspectral image cubes of CML versus healthy blood smears.Methods In the present study, we analyzed 13 hyperspectral image cubes of CML and healthy neutrophils. The 3-D SGM algorithm was compared to the conventional Windowed Spectral Angle Mapping (Windowed SAM) method. The 3-D SGM exploited the spectral information of the image cube together with the inter-band and inter-pixel data by extracting the 3-D gradient vector from each pixel. The Windowed SAM determined the similarity between the averaged window of a 2×2 training pixel group and the test pixel, in the multidimensional spectral angle.Results The specificity measure of 3-D SGM (97.7%) was superior to Windowed SAM (72.7%) at ruling out the presence of the disease, making it potentially ideal for screening patients. The positive likelihood ratio value of 3-D SGM (16.70) was superior in diagnosing the presence of the disease (i.e., positive test for CML) versus Windowed SAM (2.26). An accuracy value of 84.2% was achieved with 3-D SGM versus only 70.2% for Windowed SAM.Conclusion The new method is efficient and robust for analyzing hyperspectral images of CML versus healthy neutrophils. It has the potential to be developed into an inexpensive, minimally invasive method for screening CML, and could directly facilitate early diagnosis and treatment of the disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI