DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method

能力(人力资源) 计算机科学 心理测量学 数学 计量经济学 统计 心理学 社会心理学
作者
Peida Zhan,Xin Qiao
出处
期刊:Psychometrika [Springer Science+Business Media]
卷期号:87 (4): 1529-1547 被引量:24
标识
DOI:10.1007/s11336-022-09855-9
摘要

Process data refer to data recorded in computer-based assessments (CBAs) that reflect respondents’ problem-solving processes and provide greater insight into how respondents solve problems, in addition to how well they solve them. Using the rich information contained in process data, this study proposed an item expansion method to analyze action-level process data from the perspective of diagnostic classification in order to comprehensively understand respondents’ problem-solving competence. The proposed method cannot only estimate respondents’ problem-solving ability along a continuum, but also classify respondents according to their problem-solving skills. To illustrate the application and advantages of the proposed method, a Programme for International Student Assessment (PISA) problem-solving item was used. The results indicated that (a) the estimated latent classes provided more detailed diagnoses of respondents’ problem-solving skills than the observed score categories; (b) although only one item was used, the estimated higher-order latent ability reflected the respondents’ problem-solving ability more accurately than the unidimensional latent ability estimated from the outcome data; and (c) interactions among problem-solving skills followed the conjunctive condensation rule, which indicated that the specific action sequence appeared only when a respondent mastered all required problem solving skills. In conclusion, the proposed diagnostic classification approach is feasible and promising analyzing process data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天下霸唱baby完成签到,获得积分10
2秒前
默默鞋子完成签到,获得积分10
2秒前
2秒前
3秒前
12345发布了新的文献求助10
3秒前
SH123完成签到 ,获得积分10
3秒前
啾啾完成签到,获得积分20
4秒前
123完成签到,获得积分10
5秒前
dengdeng完成签到,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
Orange应助小安采纳,获得10
7秒前
彭于晏应助丁莞采纳,获得10
7秒前
9秒前
顾矜应助CZR采纳,获得10
9秒前
无极微光应助lilac采纳,获得20
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
潇洒忘幽发布了新的文献求助10
15秒前
16秒前
王强完成签到,获得积分10
16秒前
sheep完成签到,获得积分10
17秒前
zumii发布了新的文献求助30
18秒前
王强发布了新的文献求助10
18秒前
深秋远塞完成签到,获得积分10
18秒前
Diego发布了新的文献求助10
18秒前
哆啦的空间站应助栀栀懿采纳,获得10
19秒前
李小明完成签到,获得积分10
20秒前
20秒前
临风发布了新的文献求助10
20秒前
嘿嘿关注了科研通微信公众号
21秒前
聪明的云完成签到 ,获得积分10
22秒前
26秒前
26秒前
27秒前
zumii完成签到,获得积分20
28秒前
wsy关闭了wsy文献求助
29秒前
insist发布了新的文献求助10
30秒前
浮游应助MoeBella采纳,获得10
30秒前
桐桐应助CMM采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461