DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method

能力(人力资源) 计算机科学 心理测量学 数学 计量经济学 统计 心理学 社会心理学
作者
Peida Zhan,Xin Qiao
出处
期刊:Psychometrika [Springer Nature]
卷期号:87 (4): 1529-1547 被引量:22
标识
DOI:10.1007/s11336-022-09855-9
摘要

Process data refer to data recorded in computer-based assessments (CBAs) that reflect respondents’ problem-solving processes and provide greater insight into how respondents solve problems, in addition to how well they solve them. Using the rich information contained in process data, this study proposed an item expansion method to analyze action-level process data from the perspective of diagnostic classification in order to comprehensively understand respondents’ problem-solving competence. The proposed method cannot only estimate respondents’ problem-solving ability along a continuum, but also classify respondents according to their problem-solving skills. To illustrate the application and advantages of the proposed method, a Programme for International Student Assessment (PISA) problem-solving item was used. The results indicated that (a) the estimated latent classes provided more detailed diagnoses of respondents’ problem-solving skills than the observed score categories; (b) although only one item was used, the estimated higher-order latent ability reflected the respondents’ problem-solving ability more accurately than the unidimensional latent ability estimated from the outcome data; and (c) interactions among problem-solving skills followed the conjunctive condensation rule, which indicated that the specific action sequence appeared only when a respondent mastered all required problem solving skills. In conclusion, the proposed diagnostic classification approach is feasible and promising analyzing process data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿科完成签到 ,获得积分10
2秒前
2秒前
4秒前
风趣灵槐发布了新的文献求助20
5秒前
慕青应助2021采纳,获得10
5秒前
5秒前
5秒前
6秒前
CMUSK完成签到,获得积分10
7秒前
哈哈王子完成签到,获得积分10
9秒前
丝瓜完成签到,获得积分10
9秒前
AsRNA完成签到,获得积分10
9秒前
1111发布了新的文献求助10
10秒前
11秒前
顾矜应助双子苦糖采纳,获得10
11秒前
独特的鹅发布了新的文献求助10
11秒前
12秒前
12秒前
Kevin给Kevin的求助进行了留言
13秒前
慕青应助研友_LX01RL采纳,获得10
14秒前
15秒前
16秒前
英俊的铭应助gyx采纳,获得10
17秒前
难过宛亦关注了科研通微信公众号
18秒前
18秒前
18秒前
cnnnn完成签到,获得积分10
20秒前
21秒前
ChungZ完成签到 ,获得积分10
21秒前
尽力发布了新的文献求助10
22秒前
23秒前
2021发布了新的文献求助10
23秒前
24秒前
xiaoxiao发布了新的文献求助40
26秒前
xylxyl发布了新的文献求助10
26秒前
27秒前
苁蓉发布了新的文献求助10
28秒前
28秒前
阿呆快看文献完成签到,获得积分10
29秒前
Yexidong完成签到,获得积分20
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318807
求助须知:如何正确求助?哪些是违规求助? 2950181
关于积分的说明 8550346
捐赠科研通 2627227
什么是DOI,文献DOI怎么找? 1437599
科研通“疑难数据库(出版商)”最低求助积分说明 666357
邀请新用户注册赠送积分活动 652260