L-MolGAN: An improved implicit generative model for large molecular graphs

分子图 生成模型 分子描述符 生成对抗网络 计算机科学 图形 分配系数 生成语法 生物系统 理论计算机科学 人工智能 机器学习 化学 数量结构-活动关系 深度学习 生物 色谱法
作者
Yutaka Tsujimoto,Satoru Hiwa,Yushi Nakamura,Yohei Oe,Tomoyuki Hiroyasu
标识
DOI:10.26434/chemrxiv.14569545.v3
摘要

Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generative adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size increase. This poses a challenge to drug discovery and material design, where large molecules are potentially inclusive. This study develops an improved MolGAN for large molecule generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first search during the model training process. When a disconnected molecular graph is generated, L-MolGAN rewards the graph a zero score. This procedure decreases the number of disconnected graphs, and consequently increases the number of connected molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed using MolGAN as the baseline model. The model is then optimized for a quantitative estimate of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that the connectivity measure of generated molecular graphs improved by 1.96 compared with the baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient, which are important in drug design. This result confirms that L-MolGAN can generate various drug-like molecules despite being optimized for a single property, i.e., QED. This method will contribute to the efficient discovery of new molecules of larger sizes than those being generated with the existing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
2秒前
科研通AI5应助yx采纳,获得10
2秒前
3秒前
hym完成签到,获得积分10
3秒前
马静雨关注了科研通微信公众号
3秒前
111222完成签到,获得积分20
3秒前
4秒前
4秒前
三卡车安排你完成签到,获得积分10
5秒前
请叫我风吹麦浪应助Seiswan采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
曾经以亦完成签到,获得积分10
7秒前
所所应助发疯的游子采纳,获得10
7秒前
8秒前
jcm发布了新的文献求助10
9秒前
辛勤的初晴完成签到,获得积分20
9秒前
Scidog发布了新的文献求助10
9秒前
单于静柏完成签到,获得积分10
10秒前
校长发布了新的文献求助10
10秒前
11秒前
御觞丶完成签到,获得积分10
11秒前
今后应助zhui采纳,获得10
12秒前
12秒前
SciGPT应助雾蓝采纳,获得10
12秒前
lulu828完成签到,获得积分10
13秒前
13秒前
科研闲人完成签到,获得积分10
14秒前
内向秋寒发布了新的文献求助10
14秒前
14秒前
黑色兔子完成签到 ,获得积分10
14秒前
15秒前
四小时充足睡眠完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794