亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

L-MolGAN: An improved implicit generative model for large molecular graphs

分子图 生成模型 分子描述符 生成对抗网络 计算机科学 图形 分配系数 生成语法 生物系统 理论计算机科学 人工智能 机器学习 化学 数量结构-活动关系 深度学习 生物 色谱法
作者
Yutaka Tsujimoto,Satoru Hiwa,Yushi Nakamura,Yohei Oe,Tomoyuki Hiroyasu
标识
DOI:10.26434/chemrxiv.14569545.v3
摘要

Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generative adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size increase. This poses a challenge to drug discovery and material design, where large molecules are potentially inclusive. This study develops an improved MolGAN for large molecule generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first search during the model training process. When a disconnected molecular graph is generated, L-MolGAN rewards the graph a zero score. This procedure decreases the number of disconnected graphs, and consequently increases the number of connected molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed using MolGAN as the baseline model. The model is then optimized for a quantitative estimate of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that the connectivity measure of generated molecular graphs improved by 1.96 compared with the baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient, which are important in drug design. This result confirms that L-MolGAN can generate various drug-like molecules despite being optimized for a single property, i.e., QED. This method will contribute to the efficient discovery of new molecules of larger sizes than those being generated with the existing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助xbb88采纳,获得10
37秒前
慕青应助xbb88采纳,获得10
37秒前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
2分钟前
Manzia完成签到,获得积分10
2分钟前
搜集达人应助Demi_Ming采纳,获得10
2分钟前
上官若男应助黄文怡采纳,获得10
2分钟前
王小凡完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
GLv应助科研通管家采纳,获得10
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
忧虑的安青完成签到,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
Demi_Ming发布了新的文献求助10
4分钟前
Panther完成签到,获得积分10
4分钟前
4分钟前
SciGPT应助Demi_Ming采纳,获得10
4分钟前
123完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
任性的一斩完成签到,获得积分10
5分钟前
Dr_an发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
FashionBoy应助Dr_an采纳,获得30
5分钟前
6分钟前
6分钟前
正直的白羊完成签到,获得积分10
6分钟前
6分钟前
啵啵冰发布了新的文献求助30
6分钟前
丘比特应助文静的立诚采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968492
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167211
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638