L-MolGAN: An improved implicit generative model for large molecular graphs

分子图 生成模型 分子描述符 生成对抗网络 计算机科学 图形 分配系数 生成语法 生物系统 理论计算机科学 人工智能 机器学习 化学 数量结构-活动关系 深度学习 色谱法 生物
作者
Yutaka Tsujimoto,Satoru Hiwa,Yushi Nakamura,Yohei Oe,Tomoyuki Hiroyasu
标识
DOI:10.26434/chemrxiv.14569545.v3
摘要

Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generative adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size increase. This poses a challenge to drug discovery and material design, where large molecules are potentially inclusive. This study develops an improved MolGAN for large molecule generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first search during the model training process. When a disconnected molecular graph is generated, L-MolGAN rewards the graph a zero score. This procedure decreases the number of disconnected graphs, and consequently increases the number of connected molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed using MolGAN as the baseline model. The model is then optimized for a quantitative estimate of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that the connectivity measure of generated molecular graphs improved by 1.96 compared with the baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient, which are important in drug design. This result confirms that L-MolGAN can generate various drug-like molecules despite being optimized for a single property, i.e., QED. This method will contribute to the efficient discovery of new molecules of larger sizes than those being generated with the existing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助文静的翠安采纳,获得10
2秒前
见景风发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
Azhou发布了新的文献求助10
3秒前
潇洒松发布了新的文献求助10
3秒前
LO7pM2完成签到,获得积分10
4秒前
小陈发布了新的文献求助10
4秒前
Zpiao发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
vikoel发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助单纯的雅香采纳,获得10
6秒前
suer玉完成签到,获得积分10
7秒前
今后应助lhyzgsy采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
彭于晏应助完美芹采纳,获得10
9秒前
阜睿发布了新的文献求助10
9秒前
科研通AI2S应助看海棠未眠采纳,获得10
9秒前
飞翔的荷兰人完成签到,获得积分10
10秒前
10秒前
追寻紫安发布了新的文献求助10
10秒前
xiubo128完成签到 ,获得积分10
10秒前
yunsww发布了新的文献求助10
10秒前
John完成签到,获得积分10
11秒前
11秒前
852应助111采纳,获得10
11秒前
meimei发布了新的文献求助10
11秒前
11秒前
星辰大海应助谢书南采纳,获得10
13秒前
小刘完成签到,获得积分10
13秒前
大兴西北发布了新的文献求助10
14秒前
15秒前
隐形曼青应助Zpiao采纳,获得10
15秒前
巫幻香完成签到,获得积分10
15秒前
Ava应助vgh采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144560
求助须知:如何正确求助?哪些是违规求助? 2796059
关于积分的说明 7817719
捐赠科研通 2452134
什么是DOI,文献DOI怎么找? 1304892
科研通“疑难数据库(出版商)”最低求助积分说明 627331
版权声明 601432