L-MolGAN: An improved implicit generative model for large molecular graphs

分子图 生成模型 分子描述符 生成对抗网络 计算机科学 图形 分配系数 生成语法 生物系统 理论计算机科学 人工智能 机器学习 化学 数量结构-活动关系 深度学习 生物 色谱法
作者
Yutaka Tsujimoto,Satoru Hiwa,Yushi Nakamura,Yohei Oe,Tomoyuki Hiroyasu
标识
DOI:10.26434/chemrxiv.14569545.v3
摘要

Deep generative models are used to generate arbitrary molecular structures with the desired chemical properties. MolGAN is a renowned molecular generation models that uses generative adversarial networks (GANs) and reinforcement learning to generate molecular graphs in one shot. MolGAN can effectively generate a small molecular graph with nine or fewer heavy atoms. However, the graphs tend to become disconnected as the molecular size increase. This poses a challenge to drug discovery and material design, where large molecules are potentially inclusive. This study develops an improved MolGAN for large molecule generation (L-MolGAN). In this model, the connectivity of molecular graphs is evaluated by a depth-first search during the model training process. When a disconnected molecular graph is generated, L-MolGAN rewards the graph a zero score. This procedure decreases the number of disconnected graphs, and consequently increases the number of connected molecular graphs. The effectiveness of L-MolGAN is experimentally evaluated. The size and connectivity of the molecular graphs generated with data from the ZINC-250k molecular dataset are confirmed using MolGAN as the baseline model. The model is then optimized for a quantitative estimate of drug-likeness (QED) to generate drug-like molecules. The experimental results indicate that the connectivity measure of generated molecular graphs improved by 1.96 compared with the baseline model at a larger maximum molecular size of 20 atoms. The molecules generated by L-MolGAN are evaluated in terms of multiple chemical properties, QED, synthetic accessibility, and log octanol–water partition coefficient, which are important in drug design. This result confirms that L-MolGAN can generate various drug-like molecules despite being optimized for a single property, i.e., QED. This method will contribute to the efficient discovery of new molecules of larger sizes than those being generated with the existing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lighters完成签到 ,获得积分10
2秒前
研友_850EYZ完成签到,获得积分10
3秒前
芋头完成签到,获得积分10
3秒前
曾珍完成签到 ,获得积分10
3秒前
共享精神应助好哥哥采纳,获得10
3秒前
NTHU_KAO完成签到,获得积分20
4秒前
华仔应助年华采纳,获得10
5秒前
西风惊绿完成签到,获得积分10
5秒前
大力丹琴完成签到,获得积分10
5秒前
xlz110完成签到,获得积分10
6秒前
iammrcpp发布了新的文献求助10
6秒前
33完成签到 ,获得积分10
6秒前
guyankuan发布了新的文献求助10
7秒前
yang应助文件撤销了驳回
7秒前
YDSG完成签到,获得积分10
9秒前
高大的友梅完成签到,获得积分10
9秒前
刘帅给刘帅的求助进行了留言
9秒前
月光沉沉完成签到,获得积分10
10秒前
张晓龙发布了新的文献求助10
11秒前
脑洞疼应助123456采纳,获得10
12秒前
12秒前
怕黑鑫完成签到,获得积分10
12秒前
gs完成签到,获得积分10
13秒前
PENGDOCTOR完成签到,获得积分10
13秒前
小白完成签到 ,获得积分10
13秒前
13秒前
14秒前
whisper完成签到,获得积分10
14秒前
小苹果完成签到,获得积分10
14秒前
wood完成签到,获得积分10
15秒前
16秒前
调皮钱钱发布了新的文献求助10
16秒前
16秒前
常璐旸发布了新的文献求助10
17秒前
陈小雨发布了新的文献求助30
17秒前
17秒前
18秒前
17991完成签到,获得积分10
18秒前
greyII完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911379
求助须知:如何正确求助?哪些是违规求助? 4186919
关于积分的说明 13001902
捐赠科研通 3954732
什么是DOI,文献DOI怎么找? 2168427
邀请新用户注册赠送积分活动 1186877
关于科研通互助平台的介绍 1094208