Detection of Stress-Related Secretory IgA in Human Sweat Using Lectin-Immobilized Field Effect Transistor Biosensor

生物传感器 木菠萝素 材料科学 凝集素 纳米技术 化学 生物化学
作者
Hiroki Hayashi,Naoki Sakamoto,Sho Hideshima,Yoshitaka Harada,Mika Tsuna,Shigeki Kuroiwa,Keishi Ohashi,Toshiyuki Momma,Tetsuya Ōsaka
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (66): 3391-3391
标识
DOI:10.1149/ma2020-02663391mtgabs
摘要

A field effect transistor (FET) biosensor is a promising device for various applications such as medical diagnosis and environmental monitoring. Because characteristics of FET biosensors are directly influenced by the change of gate-insulator surface potential induced by the adsorption of charged molecules, FET biosensors could provide the rapid and label-free biomolecular detection. Recently, mental stress-related diseases, such as integration disorder syndrome and depression, affect people's health, resulting that simple stress monitoring is expected for early stage detection of the disease. Previously, the relation between concentration of stress markers and mental stress has been reported [1] , and the monitoring of circadian concentration of the markers is found to be important for prediction of the stress condition. Especially, secretory immunoglobulin A (s-IgA), which is an immunity-related molecule present in the human mucus, is one of the candidates to be monitored as a stress marker. However, conventional methods for measuring concentration of s-IgA are restricted in daily use due to complex protocol, time-consuming and expensive equipment. Nowadays, we have investigated sensitive detection method for various targets by using the FET biosensor [2,3] . To achieve improvement of the sensitivity, small receptors have been applied to increase electrical responses owing to the effective use of a charge-recognition region from FET gate surface, Debye length [4,5] . In this study, we selected a small plant lectin, jacalin (66 kDa), which specifically binds glycan of hinge region of IgA, as a receptor. Additionally, jacalin was inexpensive compared with antibody due to the purification from jackfruits seeds. From these points, jacalin-immobilized FET biosensor was worth to be investigated to realize a simple, sensitive and low-cost stress monitoring device for stress marker. Thus, we investigated the usefulness of the jacalin as a FET receptor. The SiO 2 gate insulator of the FET was exposed to O 2 plasma (200 W for 1 min) for introduction of hydroxyl groups reacting with triethoxysilane groups of self-assembled monolayer (SAM). Then, the FET chip was immersed in toluene solvent including 1%(v/w) 3-aminopropyltriethoxysilane in an argon atmosphere (60ºC for 7 min.). Following by the cross-linking by glutaraldehyde, jacalin was immobilized on FET gate surfaces. Finally, ethanolamine capping was performed to prevent the non-specific adsorption of contaminating molecules in analyzed samples, resulting in the fabrication of the jacalin-immobilized FET biosensor. The FET characteristics were measured by sweeping the gate-voltage ( V g ) from -2.0 V to 0 V with 0.1 V drain voltage ( V d ) in 0.01 × phosphate buffered saline (pH 7.4). Then, the electrical responses (Δ V g ) were analyzed from the FET characteristics before and after the addition of analyte to gate surface. To evaluate the specificity of jacalin-immobilized FET biosensor, Δ V g caused by the addition of s-IgA and human serum albumin (HSA) were measured. The FET charactristics was shifted in a positive direction (+53 mV) due to the adsorption of negative-charged s-IgA (Figure 1a), while the responses related with HSA addition were scarcely observed. Thus, specific capture of the s-IgA molecules by the jacalin-immobilized surface was indicated. Moreover, to evaluate the advantage of jacalin, we compared Δ V g with FET functionalized by antigen binding fragment (Fab), which was obtained by cleaving the anti-s-IgA antibody. An electrical response of Fab-immobilized FET was +24 mV (Figure 1b). The change in Δ V g values for these two FET sensors using jacalin or Fab could be discussed as follows. Jacalin could capture more s-IgA molecules within Debye length from the gate surface of FET. In addition, the jacalin-immobilized FET responded linearly to s-IgA in a concentration range from 0.1 μg/mL to 100 μg/mL. Finally, sweat samples collected from healthy persons were examined with the developed jacalin-immobilized FET biosensor, and clear responses were obtained. From these results, jacalin was found to be useful as a receptor for FET biosensors to achieve a sensitive, simple and non-invasive detection of s-IgA. [1] K. Obayashi, Clin. Chim. Acta , 425, 196-201 (2013). [2] S. Hideshima, M. Kobayashi, T. Wada, S. Kuroiwa, T. Nakanishi, N. Sawamura, T. Asahi, T. Osaka, Chem. Commun. , 50, 3476-3479 (2014). [3] S. Hideshima, K. Fujita, Y. Harada, M. Tsuna, Y. Seto, S. Sekiguchi, S. Kuroiwa, T. Nakanishi, T. Osaka, Sens. Bio-Sens. Res. , 7, 90–94 (2016). [4] S. Cheng, K. Hotani, S. Hideshima, S. Kuroiwa, T. Nakanishi, M. Hashimoto, Y. Mori, T. Osaka, Materials , 7, (4), 2490-2500 (2014). [5] S. Hideshima, H. Hayashi, H. Hinou, S. Nambuya, S. Kuroiwa, T. Nakanishi, T. Momma, S.-I. Nishimura, Y. Sakoda, T. Osaka, Sci. Rep. , 9, 11616 (2019). Figure 1 V g - I d characteristics of (a) jacalin or (b) Fab-immobilized FET biosensor before and after the addition of 100 μg/mL s-IgA. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
felix发布了新的文献求助10
1秒前
GX2023完成签到,获得积分10
4秒前
华仔应助Leslie采纳,获得10
4秒前
Elaine完成签到,获得积分10
4秒前
anxin发布了新的文献求助10
5秒前
7秒前
Arthur完成签到,获得积分10
7秒前
好好学习发布了新的文献求助10
7秒前
8秒前
wyj发布了新的文献求助10
10秒前
12秒前
虚心契发布了新的文献求助10
12秒前
13秒前
彭于晏应助anxin采纳,获得10
14秒前
qiuxin完成签到,获得积分10
14秒前
烦死了完成签到 ,获得积分0
14秒前
15秒前
小猫爬楼梯完成签到,获得积分10
15秒前
wanci应助SU采纳,获得10
17秒前
17秒前
小美发布了新的文献求助10
19秒前
神勇从波发布了新的文献求助20
21秒前
roomvinli发布了新的文献求助10
21秒前
ppc524发布了新的文献求助10
21秒前
本望柒山路完成签到,获得积分10
21秒前
无情胡萝卜完成签到,获得积分10
22秒前
Hello应助高大大雁采纳,获得10
23秒前
哈哈王子完成签到,获得积分10
24秒前
虚心契完成签到,获得积分10
26秒前
26秒前
羊毛毛衣完成签到,获得积分10
27秒前
ljy2015发布了新的文献求助10
27秒前
单纯乘风完成签到 ,获得积分10
27秒前
莫愁完成签到 ,获得积分10
29秒前
彳亍1117应助小美采纳,获得10
30秒前
SU发布了新的文献求助10
32秒前
俭朴新之完成签到 ,获得积分10
34秒前
fei完成签到,获得积分20
34秒前
35秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825