清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep Learning Approach to Antibiotic Discovery

表(数据库) 生物 换位(逻辑) 分子 人工智能 机器学习 计算机科学 算法 物理 数据挖掘 量子力学
作者
Jonathan Stokes,Kevin Yang,Kyle L. Swanson,Wengong Jin,Andrés Cubillos-Ruiz,Nina M. Donghia,Craig R. MacNair,Shawn French,Lindsey A. Carfrae,Zohar Bloom‐Ackermann,Victoria M. Tran,Anush Chiappino-Pepe,Ahmed H. Badran,Ian W. Andrews,Emma J. Chory,George M. Church,Eric D. Brown,Tommi Jaakkola,Regina Barzilay,James J. Collins
出处
期刊:Cell [Cell Press]
卷期号:181 (2): 475-483 被引量:297
标识
DOI:10.1016/j.cell.2020.04.001
摘要

(Cell 180, 688–702.e1–e13; February 20, 2020) Our paper reported the use of a machine learning approach to discover new antibacterial molecules. Since publication, we have become aware of the following errors in our paper that we are now correcting. (1) The structure of ZINC000100032716, shown in the Graphical Abstract and Figure 6D, mistakenly displayed a carbonyl carbon making five bonds. We have redrawn the molecules to display the correct structures. (2) In Figure S3A and the accompanying legend, the concentrations of halicin used were 20 µg/mL (10x MIC) and 40 µg/mL (20x MIC), not 10 µg/mL and 20 µg/mL. (3) In Figure S5K, the x axis labels should range from 10-6 to 103, in accordance with the axis tick marks, not 10-5 to 103. (4) In Table S2B, BRD-K57502136-345-03-4, BRD-K90177246-001-05-5, BRD-K15514357-001-05-6, and BRD-A56621826-001-02-1 were listed as being unavailable for empirical validation. However, the four molecules that were not available for testing were BRD-K76819217-001-01-4, BRD-A41063939-001-01-0, BRD-M10279501-065-05-9, and BRD-A40472231-304-02-5. This resulted from a transposition error in converting the original training data file into the Table S2B spreadsheet. This transposition error was not present in model training. (5) In the “Initial model training and the identification of halicin” section of the Results, the halicin prediction ranks noted in parentheses should read “positions ranging from 273 to 2579,” rather than “positions raging from 273 to 1987.” (6) In the “Bacterial cell killing assays” subsection of the STAR Methods, the M. tuberculosis strain used was H37Rv, not “M37Rv.” (7) In the “Mutant generation” section, ΔnfsA::kan was mistakenly written as “ΔnsfA::kan.” (8) The section title “baumannii mouse infection model” should have been “A. baumannii mouse infection model.” (9) It was brought to our attention that SU3327 (which we renamed halicin) had been reported as an active compound in an unpublished screen, deposited to PubChem, for growth inhibition of M. tuberculosis. The following sentence has been added to the last paragraph of the Results section “Halicin is a broad-spectrum bactericidal antibiotic” to acknowledge this: “The molecule we have named halicin was reported to have growth inhibitory activity against M. tuberculosis in a high-throughput screening setting (unpublished data; PubChem AID 1259343).” (10) In preparing the final version of the manuscript, we inadvertently misspelled the last name of author Zohar Bloom-Ackermann as ‘‘Zohar Bloom-Ackerman.” These errors have now been corrected in the online version of the paper. We apologize for any inconvenience they may have caused the readers.Figure 6. Predicting New Antibiotic Candidates from Unprecedented Chemical Libraries (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S3. Mechanistic Investigations into Halicin, Related to Figure 4 (Corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S3. Mechanistic Investigations into Halicin, Related to Figure 4 (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S5. Model Predictions from the WuXi Anti-tuberculosis Library and the ZINC15 Database, Related to Figure 6 (Corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S5. Model Predictions from the WuXi Anti-tuberculosis Library and the ZINC15 Database, Related to Figure 6 (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Graphical Abstract (corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Graphical Abstract (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT) A Deep Learning Approach to Antibiotic DiscoveryStokes et al.CellFebruary 20, 2020In BriefA trained deep neural network predicts antibiotic activity in molecules that are structurally different from known antibiotics, among which Halicin exhibits efficacy against broad-spectrum bacterial infections in mice. Full-Text PDF Open Archive
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyx发布了新的文献求助10
17秒前
博ge完成签到 ,获得积分10
20秒前
orangr55发布了新的文献求助10
52秒前
小丸子完成签到 ,获得积分0
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
冷傲的擎汉完成签到 ,获得积分10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
Zhahu完成签到 ,获得积分10
3分钟前
3分钟前
beihaik完成签到 ,获得积分10
5分钟前
starwan完成签到 ,获得积分10
5分钟前
小新小新完成签到 ,获得积分10
5分钟前
科研通AI2S应助外向的妍采纳,获得10
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
小马甲应助十分十分佳采纳,获得10
5分钟前
muriel完成签到,获得积分0
5分钟前
如歌完成签到,获得积分10
5分钟前
juan完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
6分钟前
6分钟前
AmyHu完成签到,获得积分10
6分钟前
7分钟前
蝎子莱莱xth完成签到,获得积分10
7分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
7分钟前
Square完成签到,获得积分10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
方圆完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
西山菩提完成签到,获得积分10
8分钟前
郑凯翔完成签到 ,获得积分10
8分钟前
NatureLee完成签到 ,获得积分10
8分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901131
求助须知:如何正确求助?哪些是违规求助? 4180677
关于积分的说明 12977175
捐赠科研通 3945514
什么是DOI,文献DOI怎么找? 2164194
邀请新用户注册赠送积分活动 1182480
关于科研通互助平台的介绍 1088805