已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Approach to Antibiotic Discovery

表(数据库) 生物 换位(逻辑) 分子 人工智能 机器学习 计算机科学 算法 物理 数据挖掘 量子力学
作者
Jonathan Stokes,Kevin Yang,Kyle L. Swanson,Wengong Jin,Andrés Cubillos-Ruiz,Nina M. Donghia,Craig R. MacNair,Shawn French,Lindsey A. Carfrae,Zohar Bloom‐Ackermann,Victoria M. Tran,Anush Chiappino-Pepe,Ahmed H. Badran,Ian W. Andrews,Emma J. Chory,George M. Church,Eric D. Brown,Tommi Jaakkola,Regina Barzilay,James J. Collins
出处
期刊:Cell [Cell Press]
卷期号:181 (2): 475-483 被引量:251
标识
DOI:10.1016/j.cell.2020.04.001
摘要

(Cell 180, 688–702.e1–e13; February 20, 2020) Our paper reported the use of a machine learning approach to discover new antibacterial molecules. Since publication, we have become aware of the following errors in our paper that we are now correcting. (1) The structure of ZINC000100032716, shown in the Graphical Abstract and Figure 6D, mistakenly displayed a carbonyl carbon making five bonds. We have redrawn the molecules to display the correct structures. (2) In Figure S3A and the accompanying legend, the concentrations of halicin used were 20 µg/mL (10x MIC) and 40 µg/mL (20x MIC), not 10 µg/mL and 20 µg/mL. (3) In Figure S5K, the x axis labels should range from 10-6 to 103, in accordance with the axis tick marks, not 10-5 to 103. (4) In Table S2B, BRD-K57502136-345-03-4, BRD-K90177246-001-05-5, BRD-K15514357-001-05-6, and BRD-A56621826-001-02-1 were listed as being unavailable for empirical validation. However, the four molecules that were not available for testing were BRD-K76819217-001-01-4, BRD-A41063939-001-01-0, BRD-M10279501-065-05-9, and BRD-A40472231-304-02-5. This resulted from a transposition error in converting the original training data file into the Table S2B spreadsheet. This transposition error was not present in model training. (5) In the “Initial model training and the identification of halicin” section of the Results, the halicin prediction ranks noted in parentheses should read “positions ranging from 273 to 2579,” rather than “positions raging from 273 to 1987.” (6) In the “Bacterial cell killing assays” subsection of the STAR Methods, the M. tuberculosis strain used was H37Rv, not “M37Rv.” (7) In the “Mutant generation” section, ΔnfsA::kan was mistakenly written as “ΔnsfA::kan.” (8) The section title “baumannii mouse infection model” should have been “A. baumannii mouse infection model.” (9) It was brought to our attention that SU3327 (which we renamed halicin) had been reported as an active compound in an unpublished screen, deposited to PubChem, for growth inhibition of M. tuberculosis. The following sentence has been added to the last paragraph of the Results section “Halicin is a broad-spectrum bactericidal antibiotic” to acknowledge this: “The molecule we have named halicin was reported to have growth inhibitory activity against M. tuberculosis in a high-throughput screening setting (unpublished data; PubChem AID 1259343).” (10) In preparing the final version of the manuscript, we inadvertently misspelled the last name of author Zohar Bloom-Ackermann as ‘‘Zohar Bloom-Ackerman.” These errors have now been corrected in the online version of the paper. We apologize for any inconvenience they may have caused the readers.Figure 6. Predicting New Antibiotic Candidates from Unprecedented Chemical Libraries (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S3. Mechanistic Investigations into Halicin, Related to Figure 4 (Corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S3. Mechanistic Investigations into Halicin, Related to Figure 4 (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S5. Model Predictions from the WuXi Anti-tuberculosis Library and the ZINC15 Database, Related to Figure 6 (Corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Figure S5. Model Predictions from the WuXi Anti-tuberculosis Library and the ZINC15 Database, Related to Figure 6 (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Graphical Abstract (corrected)View Large Image Figure ViewerDownload Hi-res image Download (PPT)Graphical Abstract (original)View Large Image Figure ViewerDownload Hi-res image Download (PPT) A Deep Learning Approach to Antibiotic DiscoveryStokes et al.CellFebruary 20, 2020In BriefA trained deep neural network predicts antibiotic activity in molecules that are structurally different from known antibiotics, among which Halicin exhibits efficacy against broad-spectrum bacterial infections in mice. Full-Text PDF Open Archive
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寒梅恋雪完成签到 ,获得积分10
3秒前
凌晨幻舞发布了新的文献求助30
3秒前
美琦完成签到,获得积分10
5秒前
鸣蜩十三完成签到,获得积分10
6秒前
王王完成签到 ,获得积分10
7秒前
潘尼完成签到,获得积分10
7秒前
7秒前
学不完了完成签到 ,获得积分10
8秒前
RootShanno完成签到,获得积分20
10秒前
10秒前
11秒前
灵巧汉堡完成签到 ,获得积分10
11秒前
MchemG完成签到,获得积分0
11秒前
巴斯光年完成签到,获得积分20
13秒前
Yuan发布了新的文献求助10
13秒前
RootShanno发布了新的文献求助10
13秒前
一杆长空完成签到,获得积分10
14秒前
大模型应助潘尼采纳,获得10
14秒前
16秒前
小蜻蜓发布了新的文献求助30
16秒前
lydy1993完成签到,获得积分10
17秒前
淡淡博发布了新的文献求助10
17秒前
华仔应助巴斯光年采纳,获得10
17秒前
18秒前
FashionBoy应助feng采纳,获得10
19秒前
jojo发布了新的文献求助10
20秒前
刘刘完成签到 ,获得积分10
20秒前
凉拌鱼腥草完成签到,获得积分10
21秒前
金蛋蛋完成签到 ,获得积分10
24秒前
等待春天发布了新的文献求助10
24秒前
姜雍发布了新的文献求助10
24秒前
可达鸭完成签到 ,获得积分10
25秒前
26秒前
27秒前
impending完成签到,获得积分10
29秒前
领导范儿应助凉拌鱼腥草采纳,获得10
29秒前
30秒前
马er发布了新的文献求助10
31秒前
小巧的凌兰完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629