Nonlinear Data Assimilation by Deep Learning Embedded in an Ensemble Kalman Filter

集合卡尔曼滤波器 数据同化 集成学习 集合预报 卡尔曼滤波器 计算机科学 非线性系统 算法 机器学习 人工智能 扩展卡尔曼滤波器 气象学 地理 物理 量子力学
作者
Tadashi Tsuyuki,Ryosuke TAMURA
出处
期刊:Journal of the Meteorological Society of Japan 卷期号:100 (3): 533-553 被引量:3
标识
DOI:10.2151/jmsj.2022-027
摘要

Recent progress in the particle filter has made it possible to use it for nonlinear or non-Gaussian data assimilation in high-dimensional systems, but a relatively large ensemble is still needed to outperform the ensemble Kalman filter (EnKF) in terms of accuracy. An alternative ensemble data assimilation method based on deep learning is presented, in which deep neural networks are locally embedded in the EnKF. This method is named the deep learning-ensemble Kalman filter (DL-EnKF). The DL-EnKF analysis ensemble is generated from the DL-EnKF analysis and the EnKF analysis deviation ensemble. The performance of the DL-EnKF is investigated through data assimilation experiments in both perfect and imperfect model scenarios using three versions of the Lorenz 96 model and a deterministic EnKF with an ensemble size of 10. Nonlinearity in data assimilation is controlled by changing the time interval between observations. Results demonstrate that despite being such a small ensemble, the DL-EnKF is superior to the EnKF in terms of accuracy in strongly nonlinear regimes and that the DL-EnKF analysis is more accurate than the output of deep learning because of positive feedback in assimilation cycles. Even if the target of training is an EnKF analysis with a large ensemble or a simulation by an imperfect model, the improvement introduced by the DL-EnKF is not very different from the case where the target of training is the true state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小樱桃发布了新的文献求助10
刚刚
蓁66发布了新的文献求助10
1秒前
keken发布了新的文献求助10
2秒前
3秒前
xike完成签到,获得积分10
4秒前
6秒前
6秒前
6秒前
7秒前
anlin完成签到 ,获得积分10
7秒前
NeXt_best完成签到,获得积分10
7秒前
无端完成签到,获得积分10
7秒前
9秒前
李健应助细心咖啡豆采纳,获得10
9秒前
10秒前
10秒前
keken完成签到,获得积分10
11秒前
踏实丹亦发布了新的文献求助10
12秒前
安琪琪发布了新的文献求助10
12秒前
诶飞飞飞飞完成签到,获得积分20
12秒前
13秒前
Ray发布了新的文献求助10
14秒前
机器猫发布了新的文献求助10
18秒前
桐桐应助无端采纳,获得10
18秒前
科目三应助年轻半雪采纳,获得10
18秒前
悠悠小土豆完成签到,获得积分10
18秒前
22秒前
22秒前
踏实丹亦完成签到,获得积分10
22秒前
科研通AI2S应助疯狂的绝山采纳,获得10
26秒前
lvsehx发布了新的文献求助10
27秒前
Evan完成签到,获得积分10
28秒前
嗯哼应助诶飞飞飞飞采纳,获得20
30秒前
31秒前
汉堡包应助小吴采纳,获得10
31秒前
仁爱的谷南完成签到,获得积分10
32秒前
粗犷的沛容应助lvsehx采纳,获得10
32秒前
34秒前
嗯哼举报白华苍松求助涉嫌违规
34秒前
36秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212561
求助须知:如何正确求助?哪些是违规求助? 2861529
关于积分的说明 8129175
捐赠科研通 2527447
什么是DOI,文献DOI怎么找? 1361197
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615761