亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nonlinear Data Assimilation by Deep Learning Embedded in an Ensemble Kalman Filter

集合卡尔曼滤波器 数据同化 集成学习 集合预报 卡尔曼滤波器 计算机科学 非线性系统 算法 机器学习 人工智能 扩展卡尔曼滤波器 气象学 地理 物理 量子力学
作者
Tadashi Tsuyuki,Ryosuke TAMURA
出处
期刊:Journal of the Meteorological Society of Japan 卷期号:100 (3): 533-553 被引量:3
标识
DOI:10.2151/jmsj.2022-027
摘要

Recent progress in the particle filter has made it possible to use it for nonlinear or non-Gaussian data assimilation in high-dimensional systems, but a relatively large ensemble is still needed to outperform the ensemble Kalman filter (EnKF) in terms of accuracy. An alternative ensemble data assimilation method based on deep learning is presented, in which deep neural networks are locally embedded in the EnKF. This method is named the deep learning-ensemble Kalman filter (DL-EnKF). The DL-EnKF analysis ensemble is generated from the DL-EnKF analysis and the EnKF analysis deviation ensemble. The performance of the DL-EnKF is investigated through data assimilation experiments in both perfect and imperfect model scenarios using three versions of the Lorenz 96 model and a deterministic EnKF with an ensemble size of 10. Nonlinearity in data assimilation is controlled by changing the time interval between observations. Results demonstrate that despite being such a small ensemble, the DL-EnKF is superior to the EnKF in terms of accuracy in strongly nonlinear regimes and that the DL-EnKF analysis is more accurate than the output of deep learning because of positive feedback in assimilation cycles. Even if the target of training is an EnKF analysis with a large ensemble or a simulation by an imperfect model, the improvement introduced by the DL-EnKF is not very different from the case where the target of training is the true state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scuter完成签到,获得积分10
2秒前
7秒前
11秒前
12秒前
nsc发布了新的文献求助30
12秒前
bbdd2334发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
18秒前
27秒前
小马甲应助nsc采纳,获得10
30秒前
54秒前
Rabbit发布了新的文献求助10
57秒前
1分钟前
1分钟前
kaka完成签到,获得积分10
1分钟前
nsc发布了新的文献求助10
1分钟前
思源应助nsc采纳,获得10
1分钟前
酷波er应助Rabbit采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Rabbit完成签到,获得积分10
2分钟前
2分钟前
nsc发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
ICE_MILK发布了新的文献求助10
3分钟前
郗妫完成签到,获得积分10
4分钟前
4分钟前
ICE_MILK完成签到,获得积分10
4分钟前
jarrykim完成签到,获得积分10
4分钟前
勿惏发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
kaka发布了新的文献求助10
5分钟前
5分钟前
5分钟前
完美世界应助勿惏采纳,获得10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264