Nonlinear Data Assimilation by Deep Learning Embedded in an Ensemble Kalman Filter

集合卡尔曼滤波器 数据同化 集成学习 集合预报 卡尔曼滤波器 计算机科学 非线性系统 算法 机器学习 人工智能 扩展卡尔曼滤波器 气象学 地理 物理 量子力学
作者
Tadashi Tsuyuki,Ryosuke TAMURA
出处
期刊:Journal of the Meteorological Society of Japan 卷期号:100 (3): 533-553 被引量:3
标识
DOI:10.2151/jmsj.2022-027
摘要

Recent progress in the particle filter has made it possible to use it for nonlinear or non-Gaussian data assimilation in high-dimensional systems, but a relatively large ensemble is still needed to outperform the ensemble Kalman filter (EnKF) in terms of accuracy. An alternative ensemble data assimilation method based on deep learning is presented, in which deep neural networks are locally embedded in the EnKF. This method is named the deep learning-ensemble Kalman filter (DL-EnKF). The DL-EnKF analysis ensemble is generated from the DL-EnKF analysis and the EnKF analysis deviation ensemble. The performance of the DL-EnKF is investigated through data assimilation experiments in both perfect and imperfect model scenarios using three versions of the Lorenz 96 model and a deterministic EnKF with an ensemble size of 10. Nonlinearity in data assimilation is controlled by changing the time interval between observations. Results demonstrate that despite being such a small ensemble, the DL-EnKF is superior to the EnKF in terms of accuracy in strongly nonlinear regimes and that the DL-EnKF analysis is more accurate than the output of deep learning because of positive feedback in assimilation cycles. Even if the target of training is an EnKF analysis with a large ensemble or a simulation by an imperfect model, the improvement introduced by the DL-EnKF is not very different from the case where the target of training is the true state.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Hello应助cora采纳,获得10
1秒前
汉唐精彩完成签到,获得积分10
2秒前
2秒前
3秒前
田茂青完成签到,获得积分10
3秒前
damian发布了新的文献求助30
3秒前
3秒前
聪明芒果完成签到,获得积分10
3秒前
Vvvvvvv应助虫二先生采纳,获得10
3秒前
西大研究生完成签到 ,获得积分10
3秒前
4秒前
4秒前
呆呆完成签到,获得积分10
4秒前
左一酱完成签到 ,获得积分10
5秒前
平淡南霜发布了新的文献求助10
5秒前
Sweet关注了科研通微信公众号
5秒前
5秒前
赘婿应助wangfu采纳,获得10
6秒前
6秒前
6秒前
pipge完成签到,获得积分20
6秒前
7秒前
澳澳发布了新的文献求助10
7秒前
8秒前
清脆的映天完成签到,获得积分10
8秒前
yl驳回了sweetbearm应助
8秒前
隐形曼青应助2鱼采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
香蕉觅云应助junzilan采纳,获得10
9秒前
张老涵发布了新的文献求助10
9秒前
灌饼发布了新的文献求助30
9秒前
罗实发布了新的文献求助10
9秒前
张张发布了新的文献求助10
10秒前
木香发布了新的文献求助10
10秒前
朴实以松发布了新的文献求助10
10秒前
在水一方应助神帅酷哥采纳,获得10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794