Gradient Acceptability and Linguistic Theory

语法 语言学 语法性 多样性(控制论) 语法 计算机科学 判决 范畴变量 变化(天文学) 语义学(计算机科学) 心理学 人工智能
作者
Elaine J. Francis
出处
期刊:Oxford University Press eBooks [Oxford University Press]
标识
DOI:10.1093/oso/9780192898944.001.0001
摘要

In Gradient Acceptability and Linguistic Theory, Elaine J. Francis examines a challenging problem at the intersection of theoretical linguistics and the psychology of language: the problem of interpreting gradient judgments of sentence acceptability in relation to theories of grammatical knowledge. This problem is important because acceptability judgments constitute the primary source of data on which such theories have been built, despite being susceptible to various extra-grammatical factors. Through a review of experimental and corpus-based research on a variety of syntactic phenomena and an in-depth examination of two case studies, Francis argues for two main positions. The first is that converging evidence from online comprehension tasks, elicited production tasks, and corpora of naturally occurring discourse can help determine the sources of variation in acceptability judgments and narrow down the range of plausible theoretical interpretations. The second is that the interpretation of judgment data depends crucially on one’s theoretical commitments and assumptions, especially with respect to the nature of the syntax–semantics interface and the choice of either a categorical or a gradient notion of grammaticality. The theoretical frameworks considered in this book include derivational theories (e.g. Minimalism, Principles and Parameters), constraint-based theories (e.g. Sign-Based Construction Grammar, Simpler Syntax), competition-based theories (e.g. Stochastic Optimality Theory, Decathlon Model), and usage-based approaches. While showing that acceptability judgment data are typically compatible with the assumptions of various theoretical frameworks, Francis argues that some gradient phenomena are best captured within frameworks that permit soft constraints—non-categorical grammatical constraints that encode the conventional preferences of language users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗又柔应助栗子鱼采纳,获得10
刚刚
科研通AI2S应助whisper采纳,获得10
1秒前
xiaoshu发布了新的文献求助10
1秒前
3秒前
田様应助谦让的小姜采纳,获得10
4秒前
王超远发布了新的文献求助10
5秒前
月落杉松晚完成签到 ,获得积分10
5秒前
无奈以南完成签到,获得积分10
5秒前
8秒前
航航发布了新的文献求助10
9秒前
科研通AI2S应助Bluebulu采纳,获得10
9秒前
共享精神应助莫语采纳,获得10
10秒前
开心夏真完成签到,获得积分10
11秒前
翟闻雨完成签到,获得积分10
11秒前
11秒前
12秒前
xzl关闭了xzl文献求助
12秒前
Douglas关注了科研通微信公众号
13秒前
CC完成签到 ,获得积分10
14秒前
小树完成签到,获得积分10
16秒前
20秒前
20秒前
20秒前
星1完成签到,获得积分10
21秒前
aliupeifang发布了新的文献求助10
22秒前
大模型应助早睡早起采纳,获得10
23秒前
24秒前
练习者发布了新的文献求助10
25秒前
bohn123完成签到 ,获得积分10
25秒前
思源应助zzzwww采纳,获得10
26秒前
30秒前
邢慧兰完成签到,获得积分10
30秒前
30秒前
30秒前
南风旧巷完成签到,获得积分10
32秒前
Singularity应助yao采纳,获得10
32秒前
33秒前
刘唐荣发布了新的文献求助10
33秒前
34秒前
真没睡发布了新的文献求助10
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046