Performance improvement ofproton‐exchangemembrane fuel cells through different gas injection channel geometries

质子交换膜燃料电池 功率密度 离散化 燃料电池 材料科学 工作(物理) 电流密度 功率(物理) 化学 核工程 化学工程 机械 工程类 热力学 机械工程 物理 数学 量子力学 数学分析
作者
Hojjat Ashrafi,Nader Pourmahmoud,Iraj Mirzaee,Nima Ahmadi
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (7): 8781-8792 被引量:18
标识
DOI:10.1002/er.7755
摘要

The performance of proton-exchange membrane (PEM) fuel cells is strongly dependent on the geometry, flow channel configuration, and size. The present work numerically studies the performance of PEM fuel cells through the design of gas injection channels of different geometries. Computational fluid dynamics was adopted to solve the governing equations. The finite volume method was used to discretize and solve the equations. The channel geometries included spiral quasi (Model A), parallel (Model B), and pin (Model C), which have the same dimensions as the base serpentine model. The performance of the system was validated using the base model, and the simulation was carried out at a voltage of 0.6 V. The present study primarily aimed to utilize novel PEM fuel cell designs and improve their performance. The highest current density and output power were found to occur in Model C, whereas Model B had the lowest current density and output power. The temperature distribution was uniform in Model C and the base model. Moreover, Model C had the lowest water production; therefore, water immersion would not interrupt the fuel cell. On the other hand, Model B was observed to experience the largest liquid water generation, leading to an interrupted fuel cell. Model C had the lowest pressure loss and, therefore, lower power was required to pump gasses through the channel. It was found that Models C and B had the highest and lowest performances, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助佩琦采纳,获得10
刚刚
刚刚
1秒前
xyma9408完成签到,获得积分10
1秒前
melody发布了新的文献求助10
1秒前
顾矜应助yanxi采纳,获得10
1秒前
叶子发布了新的文献求助20
1秒前
Huang发布了新的文献求助10
1秒前
科研通AI6应助白白采纳,获得10
1秒前
DUBUYINKE完成签到,获得积分10
2秒前
Huang发布了新的文献求助10
2秒前
Huang发布了新的文献求助10
2秒前
Huang发布了新的文献求助10
2秒前
Huang发布了新的文献求助10
2秒前
Huang发布了新的文献求助10
2秒前
科研通AI6应助柔情公蚂蚁采纳,获得30
2秒前
超帅妙竹完成签到,获得积分10
2秒前
hy完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
3秒前
慕青应助小叙采纳,获得10
3秒前
Yu发布了新的文献求助10
3秒前
小金鱼儿发布了新的文献求助10
3秒前
叶叶完成签到,获得积分10
4秒前
淡淡书白完成签到,获得积分10
4秒前
Bonny完成签到,获得积分10
4秒前
向银博完成签到,获得积分10
4秒前
四月发布了新的文献求助10
4秒前
Lucas应助呼延忘幽采纳,获得10
4秒前
迷路旭发布了新的文献求助10
5秒前
吉安娜完成签到,获得积分10
5秒前
友好书包应助nines采纳,获得10
5秒前
Miracle发布了新的文献求助10
5秒前
5秒前
盛夏如花发布了新的文献求助10
5秒前
一一一发布了新的文献求助10
6秒前
6秒前
努力搞科研完成签到,获得积分20
7秒前
Obliviate完成签到,获得积分10
7秒前
打打应助一帆风顺采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251