Transfer Learning on Interstitial Lung Disease Classification

学习迁移 计算机科学 感应转移 人工智能 卷积神经网络 深度学习 多任务学习 特征(语言学) 机器学习 模式识别(心理学) 无监督学习 上下文图像分类 半监督学习 任务(项目管理) 集合(抽象数据类型) 人工神经网络 特征学习 图像(数学) 机器人学习 工程类 哲学 机器人 程序设计语言 系统工程 语言学 移动机器人
作者
Yi Zhi,Yuyang Wang
标识
DOI:10.1109/conf-spml54095.2021.00046
摘要

For the treatment of Interstitial Lung Disease, it is crucial to have an early diagnosis. However, doctors still have a lot of controversy in the diagnosis of lung nodules even with today’s highly developed medical imaging technology. In this article, we summarized the five major challenges we face in medical image recognition and systematically listed the applications from traditional image recognition technology to deep learning in lung CT image recognition. Compared to the traditional convolutional neural network built and trained from scratch, it is beneficial to apply transfer learning to the recognition of lung nodules. Transfer learning focus on transferring knowledge from previous well-trained task to target learning task. Transferring means pretrained networks utilize fine-tuning to reduce iteration times of weight so that it can cope with the problem of lack of high quality images. Various experiments demonstrate that transfer learning performances better than traditional convolutional neural network under complicated circumstances of image recognition such as medical images. In this article, transfer learning is classified into 3 types: inductive transfer learning, transductive transfer learning and unsupervised transfer learning. The main difference between them is label quantity of target training set. Inductive transfer learning highly depends on feature engineering. Compared to it, training sets of two remaining has few labels. However, transductive transfer learning and unsupervised transfer learning are unstable while facing sophisticated cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
螺丝老人发布了新的文献求助10
1秒前
机灵飞珍完成签到 ,获得积分10
2秒前
周星星完成签到,获得积分10
2秒前
小兔子乖乖完成签到 ,获得积分10
2秒前
桐桐应助小宝采纳,获得10
2秒前
FashionBoy应助Wangchenghan采纳,获得10
2秒前
八月宁静完成签到,获得积分10
2秒前
3秒前
zhgj完成签到,获得积分10
4秒前
4秒前
ddd发布了新的文献求助10
4秒前
4秒前
跳跃火车发布了新的文献求助10
4秒前
5秒前
时光轴完成签到,获得积分10
6秒前
踏实青槐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
jnum1完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
MM发布了新的文献求助10
9秒前
草拟大坝完成签到 ,获得积分0
9秒前
细腻海蓝完成签到,获得积分20
10秒前
10秒前
bcc666完成签到,获得积分20
10秒前
11秒前
乐乐应助678采纳,获得10
12秒前
ding应助单薄的书琴采纳,获得10
13秒前
hhhhhh应助Queen采纳,获得20
13秒前
14秒前
精灵半岛发布了新的文献求助10
14秒前
SYLH应助cz采纳,获得10
15秒前
15秒前
zzh发布了新的文献求助30
15秒前
Pamela完成签到,获得积分10
15秒前
1l2kl完成签到,获得积分10
16秒前
花开富贵完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406