Transfer Learning on Interstitial Lung Disease Classification

学习迁移 计算机科学 感应转移 人工智能 卷积神经网络 深度学习 多任务学习 特征(语言学) 机器学习 模式识别(心理学) 无监督学习 上下文图像分类 半监督学习 任务(项目管理) 集合(抽象数据类型) 人工神经网络 特征学习 图像(数学) 机器人学习 工程类 哲学 机器人 程序设计语言 系统工程 语言学 移动机器人
作者
Yi Zhi,Yuyang Wang
标识
DOI:10.1109/conf-spml54095.2021.00046
摘要

For the treatment of Interstitial Lung Disease, it is crucial to have an early diagnosis. However, doctors still have a lot of controversy in the diagnosis of lung nodules even with today’s highly developed medical imaging technology. In this article, we summarized the five major challenges we face in medical image recognition and systematically listed the applications from traditional image recognition technology to deep learning in lung CT image recognition. Compared to the traditional convolutional neural network built and trained from scratch, it is beneficial to apply transfer learning to the recognition of lung nodules. Transfer learning focus on transferring knowledge from previous well-trained task to target learning task. Transferring means pretrained networks utilize fine-tuning to reduce iteration times of weight so that it can cope with the problem of lack of high quality images. Various experiments demonstrate that transfer learning performances better than traditional convolutional neural network under complicated circumstances of image recognition such as medical images. In this article, transfer learning is classified into 3 types: inductive transfer learning, transductive transfer learning and unsupervised transfer learning. The main difference between them is label quantity of target training set. Inductive transfer learning highly depends on feature engineering. Compared to it, training sets of two remaining has few labels. However, transductive transfer learning and unsupervised transfer learning are unstable while facing sophisticated cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助hay采纳,获得10
刚刚
1秒前
2秒前
key发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
寻雪完成签到,获得积分20
5秒前
乖巧的菜猪完成签到,获得积分10
5秒前
w_应助崩溃采纳,获得10
5秒前
6秒前
7秒前
脑洞疼应助However采纳,获得10
7秒前
7秒前
南风发布了新的文献求助10
7秒前
小黄发布了新的文献求助10
8秒前
8秒前
情怀应助善良的妍采纳,获得10
9秒前
赘婿应助美吧采纳,获得10
9秒前
鲤鱼懿轩发布了新的文献求助10
10秒前
Gorone完成签到,获得积分10
10秒前
完美世界应助琲琲采纳,获得10
11秒前
hay发布了新的文献求助10
12秒前
天天快乐应助傻傻的凌寒采纳,获得10
12秒前
善学以致用应助key采纳,获得10
12秒前
13秒前
14秒前
一切顺利完成签到,获得积分10
14秒前
小蘑菇应助小元采纳,获得10
15秒前
蝴蝶结完成签到,获得积分10
16秒前
可爱的函函应助nn采纳,获得10
17秒前
屹舟发布了新的文献求助10
19秒前
20秒前
升升升呀应助任性的蝴蝶采纳,获得10
22秒前
22秒前
Trueman发布了新的文献求助10
22秒前
22秒前
小蘑菇应助优秀采纳,获得10
22秒前
小黄完成签到,获得积分10
23秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194