Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands

云纹 化学 电化学 双层石墨烯 石墨烯 化学物理 双层 光学 纳米技术 材料科学 光电子学 电极 物理 物理化学 生物化学
作者
Yun Yu,Kaidi Zhang,Holden Parks,Mohammad Babar,Stephen Carr,Isaac M. Craig,Madeline Van Winkle,Artur Lyssenko,Takashi Taniguchi,Kenji Watanabe,Venkatasubramanian Viswanathan,D. Kwabena Bediako
出处
期刊:Nature Chemistry [Springer Nature]
卷期号:14 (3): 267-273 被引量:84
标识
DOI:10.1038/s41557-021-00865-1
摘要

Tailoring electron transfer dynamics across solid–liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist-angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the ‘magic angle’ (~1.1°). This effect is driven by the angle-dependent tuning of moiré-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moiré angle is controlled by a structural relaxation of the moiré superlattice at twist angles of <2°, and ‘topological defect’ AA stacking regions, where flat bands are localized, produce a large anomalous local electrochemical enhancement that cannot be accounted for by the elevated local density of states alone. Controlling the crystallographic registry of layered materials through interlayer twist angles has introduced a distinctive degree of freedom for tuning their electronic behaviour. Now, the interfacial electrochemical kinetics of solution-phase redox complexes at twisted bilayer graphene electrodes have been modulated by the angle-dependent tuning of moiré-derived flat bands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖发布了新的文献求助10
刚刚
刚刚
跳跃尔容完成签到,获得积分10
1秒前
wyblobin完成签到,获得积分10
1秒前
1秒前
2秒前
沉默沛岚完成签到,获得积分10
2秒前
丰知然应助宇文宛菡采纳,获得10
2秒前
所所应助tu采纳,获得30
3秒前
mechefy完成签到,获得积分10
3秒前
鲤鱼萧完成签到,获得积分10
4秒前
宗笑晴完成签到,获得积分10
4秒前
5秒前
小蘑菇应助头发乱了采纳,获得10
5秒前
代萌萌发布了新的文献求助10
6秒前
jucy发布了新的文献求助50
6秒前
6秒前
Lz完成签到,获得积分10
6秒前
Hello应助葛辉辉采纳,获得10
6秒前
秦嘉旎完成签到,获得积分10
7秒前
华仔应助通~采纳,获得10
7秒前
万能图书馆应助半颗橙子采纳,获得10
7秒前
樱铃完成签到,获得积分10
8秒前
8秒前
上官若男应助俭朴的明轩采纳,获得10
8秒前
1199发布了新的文献求助10
9秒前
英姑应助包容的过客采纳,获得10
10秒前
标致的战斗机完成签到,获得积分10
10秒前
科研人发布了新的文献求助10
11秒前
hl完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助dingdong采纳,获得10
12秒前
Jasper应助幸福胡萝卜采纳,获得10
12秒前
爱看文献的小羽毛完成签到,获得积分10
12秒前
13秒前
song99发布了新的文献求助10
13秒前
13秒前
juan完成签到 ,获得积分10
13秒前
徐安琪完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762