Explainability for deep learning in mammography image quality assessment

增采样 计算机科学 深度学习 人工智能 乳腺摄影术 图像质量 图像(数学) 质量(理念) 成像体模 人工神经网络 机器学习 深层神经网络 计算机视觉 模式识别(心理学) 癌症 内科学 放射科 哲学 乳腺癌 认识论 医学
作者
Narbota Amanova,Jörg Martin,Clemens Elster
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (2): 025015-025015 被引量:6
标识
DOI:10.1088/2632-2153/ac7a03
摘要

Abstract The application of deep learning has recently been proposed for the assessment of image quality in mammography. It was demonstrated in a proof-of-principle study that the proposed approach can be more efficient than currently applied automated conventional methods. However, in contrast to conventional methods, the deep learning approach has a black-box nature and, before it can be recommended for the routine use, it must be understood more thoroughly. For this purpose, we propose and apply a new explainability method: the oriented, modified integrated gradients (OMIG) method. The design of this method is inspired by the integrated gradientsmethod but adapted considerably to the use case at hand. To further enhance this method, an upsampling technique is developed that produces high-resolution explainability maps for the downsampled data used by the deep learning approach. Comparison with established explainability methods demonstrates that the proposed approach yields substantially more expressive and informative results for our specific use case. Application of the proposed explainability approach generally confirms the validity of the considered deep learning-based mammography image quality assessment (IQA) method. Specifically, it is demonstrated that the predicted image quality is based on a meaningful mapping that makes successful use of certain geometric structures of the images. In addition, the novel explainability method helps us to identify the parts of the employed phantom that have the largest impact on the predicted image quality, and to shed some light on cases in which the trained neural networks fail to work as expected. While tailored to assess a specific approach from deep learning for mammography IQA, the proposed explainability method could also become relevant in other, similar deep learning applications based on high-dimensional images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Wind发布了新的文献求助10
1秒前
1秒前
盛子骁发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
忒寒碜完成签到,获得积分10
3秒前
乐观期待完成签到,获得积分10
3秒前
2425发布了新的文献求助10
4秒前
酷酷学完成签到,获得积分10
4秒前
4秒前
4秒前
fafamimireredo完成签到,获得积分10
5秒前
bubu完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
呼呼发布了新的文献求助10
8秒前
完美世界应助zjiang采纳,获得10
8秒前
小聂发布了新的文献求助10
8秒前
8秒前
Cannel完成签到,获得积分20
9秒前
南瓜头完成签到 ,获得积分10
9秒前
66289发布了新的文献求助10
9秒前
淡淡的豁完成签到,获得积分0
10秒前
鸢尾蓝完成签到,获得积分10
10秒前
11秒前
SYLH应助Thunnus001采纳,获得50
11秒前
乐观的雅彤完成签到,获得积分10
11秒前
奥暖将完成签到,获得积分10
11秒前
朴实的凡阳完成签到,获得积分10
11秒前
12秒前
bkagyin应助自然有手就行采纳,获得10
12秒前
英姑应助haha采纳,获得30
12秒前
mj01完成签到,获得积分10
13秒前
13秒前
冰冰完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582