Explainability for deep learning in mammography image quality assessment

增采样 计算机科学 深度学习 人工智能 乳腺摄影术 图像质量 图像(数学) 质量(理念) 成像体模 人工神经网络 机器学习 深层神经网络 计算机视觉 模式识别(心理学) 癌症 内科学 放射科 哲学 乳腺癌 认识论 医学
作者
Narbota Amanova,Jörg Martin,Clemens Elster
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (2): 025015-025015 被引量:6
标识
DOI:10.1088/2632-2153/ac7a03
摘要

Abstract The application of deep learning has recently been proposed for the assessment of image quality in mammography. It was demonstrated in a proof-of-principle study that the proposed approach can be more efficient than currently applied automated conventional methods. However, in contrast to conventional methods, the deep learning approach has a black-box nature and, before it can be recommended for the routine use, it must be understood more thoroughly. For this purpose, we propose and apply a new explainability method: the oriented, modified integrated gradients (OMIG) method. The design of this method is inspired by the integrated gradientsmethod but adapted considerably to the use case at hand. To further enhance this method, an upsampling technique is developed that produces high-resolution explainability maps for the downsampled data used by the deep learning approach. Comparison with established explainability methods demonstrates that the proposed approach yields substantially more expressive and informative results for our specific use case. Application of the proposed explainability approach generally confirms the validity of the considered deep learning-based mammography image quality assessment (IQA) method. Specifically, it is demonstrated that the predicted image quality is based on a meaningful mapping that makes successful use of certain geometric structures of the images. In addition, the novel explainability method helps us to identify the parts of the employed phantom that have the largest impact on the predicted image quality, and to shed some light on cases in which the trained neural networks fail to work as expected. While tailored to assess a specific approach from deep learning for mammography IQA, the proposed explainability method could also become relevant in other, similar deep learning applications based on high-dimensional images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjy完成签到,获得积分10
刚刚
02完成签到,获得积分10
刚刚
心杨完成签到 ,获得积分10
刚刚
洪艳应助vivi采纳,获得10
1秒前
筑梦之鱼完成签到,获得积分10
1秒前
1秒前
铃兰完成签到,获得积分10
2秒前
2秒前
2秒前
tengfei完成签到 ,获得积分10
3秒前
申木完成签到 ,获得积分10
3秒前
月下梅完成签到,获得积分10
3秒前
学谦完成签到,获得积分10
4秒前
4秒前
夏寄风完成签到,获得积分10
4秒前
费费Queen完成签到,获得积分10
5秒前
玲家傻妞完成签到 ,获得积分10
6秒前
onedollar发布了新的文献求助10
8秒前
IP190237完成签到,获得积分10
8秒前
liangshuang发布了新的文献求助20
8秒前
angelinazh应助懵懂的成仁采纳,获得10
8秒前
InfoNinja应助小美妞采纳,获得30
9秒前
9秒前
小丁完成签到,获得积分20
9秒前
读书的女人最美丽完成签到,获得积分10
10秒前
10秒前
兜里面有怪兽完成签到,获得积分10
10秒前
神勇砖头发布了新的文献求助10
10秒前
gaoyang123完成签到 ,获得积分10
11秒前
Stanfuny完成签到,获得积分10
12秒前
CodeCraft应助机灵夏云采纳,获得10
12秒前
12秒前
勿庸完成签到,获得积分10
14秒前
兰子君11完成签到 ,获得积分10
14秒前
东东q东东完成签到,获得积分10
15秒前
阳正完成签到,获得积分10
17秒前
springkaka完成签到,获得积分0
18秒前
做一只快乐的科研狗完成签到 ,获得积分10
18秒前
18秒前
研研研完成签到,获得积分10
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954