重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data

阶段(地层学) 降级(电信) 计算机科学 学习迁移 人工智能 环境科学 可靠性工程 工程类 地质学 电信 古生物学
作者
Han Cheng,Xianguang Kong,Qibin Wang,Hongbo Ma,Shengkang Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:225: 108581-108581 被引量:51
标识
DOI:10.1016/j.ress.2022.108581
摘要

• The two-stage RUL prediction framework is investigated in this paper. • The two-level alarm mechanism is proposed to detect FPT of each entity adaptively. • DSCN-DTAM is built for cross-domain prognostic with incomplete target domain data. • Double transferable attention mechanism is designed for the fined-grained transfer. • Four transfer prognostic tasks verify the effectiveness of the proposed method. The remaining useful life (RUL) prediction provides an essential basis for improving mechanical equipment reliability. In practical application, the variant of working conditions and incomplete degradation data seriously deteriorate the performance of the prognostic models. In order to conquer this problem, a two-stage RUL prediction method is proposed for the cross-domain prognostic task with insufficient degradation data. At first, the two-level alarm mechanism is employed to detect the first predicting time (FPT) of each mechanical entity adaptively. Then, the deep separable convolutional network with the double transferable attention mechanism (DSCN-DTAM) is proposed to construct the cross-domain prognostic model. In DSCN-DTAM, multiple regularization strategies can guide the model to extract domain-invariant features, and the double transferable attention mechanism is designed to select the degradation information with high transferability. Finally, the proposed method is verified by multiple transfer prognostic tasks designed by two bearing datasets. Compared with other methods, the proposed method shows superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
莫问前程发布了新的文献求助10
2秒前
2秒前
3080发布了新的文献求助10
3秒前
桐桐应助Ayers采纳,获得10
3秒前
3秒前
一水合羟基磷酸钙完成签到,获得积分10
3秒前
hfut_lee发布了新的文献求助10
3秒前
3秒前
小于发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
yuuka完成签到,获得积分10
3秒前
3秒前
zhuxing发布了新的文献求助10
4秒前
古董不老完成签到,获得积分10
4秒前
坚定自信完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
4秒前
121发布了新的文献求助10
4秒前
4秒前
杨帆发布了新的文献求助10
4秒前
RTchen发布了新的文献求助10
5秒前
5秒前
123noo发布了新的文献求助10
5秒前
6秒前
缥缈的星星完成签到,获得积分10
6秒前
6秒前
华仔应助笑点低涟妖采纳,获得10
7秒前
糕糕完成签到,获得积分10
7秒前
7秒前
小二郎应助府于杰采纳,获得10
7秒前
起起发布了新的文献求助10
8秒前
8秒前
8秒前
JamesPei应助Robin采纳,获得10
8秒前
8秒前
9秒前
9秒前
LLL发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654