The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data

阶段(地层学) 降级(电信) 计算机科学 学习迁移 人工智能 环境科学 可靠性工程 工程类 地质学 电信 古生物学
作者
Han Cheng,Xianguang Kong,Qibin Wang,Hongbo Ma,Shengkang Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:225: 108581-108581 被引量:51
标识
DOI:10.1016/j.ress.2022.108581
摘要

• The two-stage RUL prediction framework is investigated in this paper. • The two-level alarm mechanism is proposed to detect FPT of each entity adaptively. • DSCN-DTAM is built for cross-domain prognostic with incomplete target domain data. • Double transferable attention mechanism is designed for the fined-grained transfer. • Four transfer prognostic tasks verify the effectiveness of the proposed method. The remaining useful life (RUL) prediction provides an essential basis for improving mechanical equipment reliability. In practical application, the variant of working conditions and incomplete degradation data seriously deteriorate the performance of the prognostic models. In order to conquer this problem, a two-stage RUL prediction method is proposed for the cross-domain prognostic task with insufficient degradation data. At first, the two-level alarm mechanism is employed to detect the first predicting time (FPT) of each mechanical entity adaptively. Then, the deep separable convolutional network with the double transferable attention mechanism (DSCN-DTAM) is proposed to construct the cross-domain prognostic model. In DSCN-DTAM, multiple regularization strategies can guide the model to extract domain-invariant features, and the double transferable attention mechanism is designed to select the degradation information with high transferability. Finally, the proposed method is verified by multiple transfer prognostic tasks designed by two bearing datasets. Compared with other methods, the proposed method shows superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助蛋总采纳,获得30
刚刚
柴先生完成签到,获得积分10
1秒前
Magic发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Zhao完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
追寻依风发布了新的文献求助10
3秒前
qwp发布了新的文献求助10
3秒前
看看发布了新的文献求助10
4秒前
4秒前
眯眯眼的裙子完成签到,获得积分10
6秒前
Lucia完成签到 ,获得积分10
6秒前
大盆完成签到,获得积分10
6秒前
开朗醉波发布了新的文献求助10
7秒前
7秒前
泡菜鱼oo完成签到,获得积分20
8秒前
8秒前
Muddle完成签到,获得积分10
8秒前
wacfpp完成签到,获得积分10
8秒前
9秒前
cindy发布了新的文献求助10
9秒前
1234发布了新的文献求助10
9秒前
疯大仙外向太清完成签到,获得积分10
9秒前
浮泷完成签到,获得积分10
11秒前
11秒前
英姑应助赵小美采纳,获得10
11秒前
11秒前
Muddle发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
柠檬不萌完成签到,获得积分10
12秒前
D追完成签到,获得积分20
12秒前
鱼王木木完成签到,获得积分10
13秒前
13秒前
完美世界应助519采纳,获得10
13秒前
angelinazh发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933