Are Graph Convolutional Networks With Random Weights Feasible?

计算机科学 可扩展性 随机梯度下降算法 卷积神经网络 图形 人工智能 水准点(测量) 数学证明 一般化 随机图 机器学习 理论计算机科学 人工神经网络 数学 几何学 大地测量学 数据库 地理 数学分析
作者
Changqin Huang,Ming Li,Feilong Cao,Hamido Fujita,Zhao Li,Xindong Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (3): 2751-2768 被引量:52
标识
DOI:10.1109/tpami.2022.3183143
摘要

Graph Convolutional Networks (GCNs), as a prominent example of graph neural networks, are receiving extensive attention for their powerful capability in learning node representations on graphs. There are various extensions, either in sampling and/or node feature aggregation, to further improve GCNs' performance, scalability and applicability in various domains. Still, there is room for further improvements on learning efficiency because performing batch gradient descent using the full dataset for every training iteration, as unavoidable for training (vanilla) GCNs, is not a viable option for large graphs. The good potential of random features in speeding up the training phase in large-scale problems motivates us to consider carefully whether GCNs with random weights are feasible. To investigate theoretically and empirically this issue, we propose a novel model termed Graph Convolutional Networks with Random Weights (GCN-RW) by revising the convolutional layer with random filters and simultaneously adjusting the learning objective with regularized least squares loss. Theoretical analyses on the model's approximation upper bound, structure complexity, stability and generalization, are provided with rigorous mathematical proofs. The effectiveness and efficiency of GCN-RW are verified on semi-supervised node classification task with several benchmark datasets. Experimental results demonstrate that, in comparison with some state-of-the-art approaches, GCN-RW can achieve better or matched accuracies with less training time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醒了没醒醒完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助ww采纳,获得10
2秒前
2秒前
2秒前
ding应助菠萝派采纳,获得10
3秒前
粗心的黄蜂完成签到,获得积分10
3秒前
朱伶可关注了科研通微信公众号
3秒前
YANG发布了新的文献求助10
5秒前
伍小胖完成签到 ,获得积分10
5秒前
6秒前
慧仔53完成签到,获得积分10
6秒前
共享精神应助狗大王采纳,获得10
7秒前
Akim应助changge采纳,获得10
7秒前
猪猪hero应助orangevv采纳,获得10
7秒前
9秒前
Caism发布了新的文献求助10
9秒前
华仔应助Pidan采纳,获得10
9秒前
阔达的无剑完成签到,获得积分10
10秒前
Tony完成签到,获得积分10
10秒前
12秒前
13秒前
18岁中二少年完成签到,获得积分10
13秒前
ozz完成签到,获得积分10
13秒前
咻咻发布了新的文献求助10
14秒前
zhumeinv完成签到 ,获得积分10
14秒前
橙子发布了新的文献求助10
14秒前
Limerencia完成签到,获得积分10
15秒前
朱伶可发布了新的文献求助10
16秒前
17秒前
18秒前
jerry完成签到,获得积分10
18秒前
18秒前
无花果应助简单的诗槐采纳,获得10
18秒前
19秒前
菠萝派发布了新的文献求助10
20秒前
shuaige发布了新的文献求助10
20秒前
hjy完成签到,获得积分10
21秒前
21秒前
YXYWZMSZ发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019