氯
化学
羟基化
降级(电信)
双氯芬酸
脱羧
猝灭(荧光)
无机化学
核化学
催化作用
有机化学
酶
荧光
计算机科学
量子力学
物理
生物化学
电信
作者
Yu-qiong Gao,Yan-yan Rao,Han Ning,Juxiang Chen,Qian Zeng,Fu-Xiang Tian,Naiyun Gao
标识
DOI:10.1016/j.seppur.2022.121555
摘要
• The degradation of diclofenac by Fe 2+ /chlorine and Fe 2+ /PMS was compared. • Both radical species and Fe(Ⅳ) contribute to DCF degradation. • The degradation products and pathways were elucidated by LC/TOF/MS combined with DFT calculations. • Chlorinated DBPs could be decreased by prolonging Fe 2+ /chlorine oxidation. The degradation of diclofenac (DCF), a commonly used nonsteroidal anti-inflammatory drug, by Fe 2+ /chlorine and Fe 2+ /PMS processes was comparatively investigated. The influencing factors of pH, Fe 2+ and oxidant dosage on DCF degradation efficiency were evaluated and optimized. Typically, with an initial solution pH of 5, an Fe 2+ dosage of 70 μM, and a chlorine or PMS dosage of 70 μM, the degradation efficiency of DCF using the Fe 2+ /chlorine and Fe 2+ /PMS processes reached 94.2% and 79.7%, respectively, within 10 min. Quenching tests indicated the coexistence of •OH and RCS in the Fe 2+ /chlorine system, and both SO 4 ●– and •OH were identified in the Fe 2+ /PMS system. In addition, Fe(IV) was also identified to participate in DCF degradation in two systems based on the oxidation of PMSO to PMSO 2 . The degradation products and pathways of DCF were elucidated by LC/TOF/MS analysis and DFT calculations. It was assumed that the degradation pathway of DCF involves hydroxylation, dechlorination, decarboxylation, cleavage of the C-N bond, and chlorine substitution. In addition, trichloromethane (TCM), dichloroacetaldehyde (DCAL), dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM) were also detected in the Fe 2+ /chlorine process, and these chlorinated DBPs initially increased and then decreased with prolonged reaction time, indicating that Fe 2+ /chlorine is capable of controlling DBPs formation. Finally, the acute and chronic toxicity of DCF and its degradation products were evaluated by the ECOSAR program.
科研通智能强力驱动
Strongly Powered by AbleSci AI