光催化
铋
钙钛矿(结构)
带隙
可见光谱
材料科学
氢
催化作用
化学
光电子学
结晶学
冶金
生物化学
有机化学
作者
Yunqi Tang,Chun Hong Mak,Chen Wang,Yu Fu,Fangfang Li,Guohua Jia,Chang‐Wei Hsieh,Hsin‐Hui Shen,Juan Carlos Colmenares,Haisheng Song,Mingjian Yuan,Yue Chen,Hsien‐Yi Hsu
标识
DOI:10.1002/smtd.202200326
摘要
The photocatalytic system using hydrohalic acid (HX) for hydrogen production is a promising strategy to generate clean and renewable fuels as well as value-added chemicals (such as X2 /X3- ). However, it is still challenging to develop a visible-light active and strong-acid resistive photocatalyst. Hybrid perovskites have been recognized as a potential photocatalyst for photovoltaic HX splitting. Herein, a novel environmentally friendly mixed halide perovskite MA3 Bi2 Cl9-x Ix with a bandgap funnel structure is developed, i.e., confirmed by energy dispersive X-ray analysis and density functional theory calculations. Due to gradient neutral formation energy within iodine-doped MA3 Bi2 Cl9 , the concentration of iodide element decreases from the surface to the interior across the MA3 Bi2 Cl9-x Ix perovskite. Because of the aligned energy levels of iodide/chloride-mixed MA3 Bi2 Cl9-x Ix , a graded bandgap funnel structure is therefore formed, leading to the promotion of photoinduced charge transfer from the interior to the surface for efficient photocatalytic redox reaction. As a result, the hydrogen generation rate of the optimized MA3 Bi2 Cl9-x Ix is enhanced up to ≈341 ± 61.7 µmol h-1 with a Pt co-catalyst under visible light irradiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI