Exploring COVID-19–Related Stressors: Topic Modeling Study

压力源 心理健康 社会心理的 大流行 潜在Dirichlet分配 主题模型 心理学 社会化媒体 公共卫生 2019年冠状病毒病(COVID-19) 老年学 医学 精神科 计算机科学 人工智能 疾病 万维网 护理部 病理 传染病(医学专业)
作者
Yue Tong Leung,Farzad Khalvati
出处
期刊:Journal of Medical Internet Research 卷期号:24 (7): e37142-e37142 被引量:18
标识
DOI:10.2196/37142
摘要

Background The COVID-19 pandemic has affected the lives of people globally for over 2 years. Changes in lifestyles due to the pandemic may cause psychosocial stressors for individuals and could lead to mental health problems. To provide high-quality mental health support, health care organizations need to identify COVID-19–specific stressors and monitor the trends in the prevalence of those stressors. Objective This study aims to apply natural language processing (NLP) techniques to social media data to identify the psychosocial stressors during the COVID-19 pandemic and to analyze the trend in the prevalence of these stressors at different stages of the pandemic. Methods We obtained a data set of 9266 Reddit posts from the subreddit \rCOVID19_support, from February 14, 2020, to July 19, 2021. We used the latent Dirichlet allocation (LDA) topic model to identify the topics that were mentioned on the subreddit and analyzed the trends in the prevalence of the topics. Lexicons were created for each of the topics and were used to identify the topics of each post. The prevalences of topics identified by the LDA and lexicon approaches were compared. Results The LDA model identified 6 topics from the data set: (1) “fear of coronavirus,” (2) “problems related to social relationships,” (3) “mental health symptoms,” (4) “family problems,” (5) “educational and occupational problems,” and (6) “uncertainty on the development of pandemic.” According to the results, there was a significant decline in the number of posts about the “fear of coronavirus” after vaccine distribution started. This suggests that the distribution of vaccines may have reduced the perceived risks of coronavirus. The prevalence of discussions on the uncertainty about the pandemic did not decline with the increase in the vaccinated population. In April 2021, when the Delta variant became prevalent in the United States, there was a significant increase in the number of posts about the uncertainty of pandemic development but no obvious effects on the topic of fear of the coronavirus. Conclusions We created a dashboard to visualize the trend in the prevalence of topics about COVID-19–related stressors being discussed on a social media platform (Reddit). Our results provide insights into the prevalence of pandemic-related stressors during different stages of the COVID-19 pandemic. The NLP techniques leveraged in this study could also be applied to analyze event-specific stressors in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的访蕊完成签到,获得积分10
刚刚
古古怪界丶黑大帅完成签到,获得积分10
1秒前
wwluv完成签到 ,获得积分10
1秒前
阿米不吃菠菜完成签到 ,获得积分10
1秒前
ytx发布了新的文献求助10
2秒前
2秒前
Cream萱发布了新的文献求助10
2秒前
lzw123456发布了新的文献求助10
3秒前
Yancent应助是陶不言啊采纳,获得10
3秒前
科研通AI2S应助hsing采纳,获得10
3秒前
3秒前
6秒前
6秒前
6秒前
fox完成签到,获得积分10
6秒前
搜集达人应助科研只有SLYT采纳,获得10
6秒前
科研通AI5应助cjh采纳,获得10
6秒前
zhangjing完成签到,获得积分10
6秒前
影像大侠完成签到,获得积分10
7秒前
小吉驳回了Lucas应助
7秒前
拼搏竺发布了新的文献求助10
7秒前
8秒前
36456657应助lucky采纳,获得10
8秒前
科研通AI5应助可以听见吗采纳,获得10
8秒前
张雯雯完成签到,获得积分10
8秒前
笨笨的晓夏应助Lue采纳,获得10
9秒前
小李发布了新的文献求助10
9秒前
Suchen完成签到 ,获得积分10
10秒前
思源应助Cream萱采纳,获得10
10秒前
小张发布了新的文献求助10
11秒前
11秒前
11秒前
kingwill应助wefs采纳,获得20
12秒前
lzw123456完成签到,获得积分10
13秒前
共享精神应助lily88采纳,获得30
13秒前
共享精神应助小海棠采纳,获得10
13秒前
13秒前
wyt完成签到,获得积分10
14秒前
CuSO4完成签到,获得积分10
14秒前
zyo515完成签到,获得积分20
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486950
求助须知:如何正确求助?哪些是违规求助? 3075033
关于积分的说明 9139262
捐赠科研通 2767282
什么是DOI,文献DOI怎么找? 1518530
邀请新用户注册赠送积分活动 703148
科研通“疑难数据库(出版商)”最低求助积分说明 701627