贝叶斯概率
噪音(视频)
机制(生物学)
计算机科学
多标签分类
统计
人工智能
模式识别(心理学)
医学
图像(数学)
医学物理学
数据挖掘
数学
哲学
认识论
作者
Mengdi Gao,Ximeng Feng,Mufeng Geng,Zhe Jiang,Lei Zhu,Xiangxi Meng,Chuanqing Zhou,Qiushi Ren,Yanye Lu
摘要
Abstract Purpose Deep neural networks (DNNs) have been widely applied in medical image classification, benefiting from its powerful mapping capability among medical images. However, these existing deep learning‐based methods depend on an enormous amount of carefully labeled images. Meanwhile, noise is inevitably introduced in the labeling process, degrading the performance of models. Hence, it is significant to devise robust training strategies to mitigate label noise in the medical image classification tasks. Methods In this work, we propose a novel Bayesian statistics‐guided label refurbishment mechanism (BLRM) for DNNs to prevent overfitting noisy images. BLRM utilizes maximum a posteriori probability in the Bayesian statistics and the exponentially time‐weighted technique to selectively correct the labels of noisy images. The training images are purified gradually with the training epochs when BLRM is activated, further improving classification performance. Results Comprehensive experiments on both synthetic noisy images (public OCT & Messidor datasets) and real‐world noisy images (ANIMAL‐10N) demonstrate that BLRM refurbishes the noisy labels selectively, curbing the adverse effects of noisy data. Also, the anti‐noise BLRMs integrated with DNNs are effective at different noise ratio and are independent of backbone DNN architectures. In addition, BLRM is superior to state‐of‐the‐art comparative methods of anti‐noise. Conclusions These investigations indicate that the proposed BLRM is well capable of mitigating label noise in medical image classification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI