Bayesian statistics‐guided label refurbishment mechanism: Mitigating label noise in medical image classification

贝叶斯概率 噪音(视频) 机制(生物学) 计算机科学 多标签分类 统计 人工智能 模式识别(心理学) 医学 图像(数学) 医学物理学 数据挖掘 数学 认识论 哲学
作者
Mengdi Gao,Ximeng Feng,Mufeng Geng,Zhe Jiang,Lei Zhu,Xiangxi Meng,Chuanqing Zhou,Qiushi Ren,Yanye Lu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (9): 5899-5913 被引量:4
标识
DOI:10.1002/mp.15799
摘要

Abstract Purpose Deep neural networks (DNNs) have been widely applied in medical image classification, benefiting from its powerful mapping capability among medical images. However, these existing deep learning‐based methods depend on an enormous amount of carefully labeled images. Meanwhile, noise is inevitably introduced in the labeling process, degrading the performance of models. Hence, it is significant to devise robust training strategies to mitigate label noise in the medical image classification tasks. Methods In this work, we propose a novel Bayesian statistics‐guided label refurbishment mechanism (BLRM) for DNNs to prevent overfitting noisy images. BLRM utilizes maximum a posteriori probability in the Bayesian statistics and the exponentially time‐weighted technique to selectively correct the labels of noisy images. The training images are purified gradually with the training epochs when BLRM is activated, further improving classification performance. Results Comprehensive experiments on both synthetic noisy images (public OCT & Messidor datasets) and real‐world noisy images (ANIMAL‐10N) demonstrate that BLRM refurbishes the noisy labels selectively, curbing the adverse effects of noisy data. Also, the anti‐noise BLRMs integrated with DNNs are effective at different noise ratio and are independent of backbone DNN architectures. In addition, BLRM is superior to state‐of‐the‐art comparative methods of anti‐noise. Conclusions These investigations indicate that the proposed BLRM is well capable of mitigating label noise in medical image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助踏雪无痕采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
WO完成签到,获得积分20
3秒前
李健的小迷弟应助Dr.coco采纳,获得10
4秒前
wnx001111发布了新的文献求助10
4秒前
脑洞疼应助nqyKOj采纳,获得20
4秒前
隐形曼青应助千秋入画采纳,获得10
4秒前
稳重诗珊完成签到,获得积分10
4秒前
4秒前
星辰大海应助哈士轩采纳,获得10
4秒前
st完成签到,获得积分10
4秒前
5秒前
jianlong0206完成签到,获得积分10
5秒前
wanci应助xxx采纳,获得10
5秒前
5秒前
果冻信号发布了新的文献求助10
5秒前
hdbys发布了新的文献求助10
5秒前
我爱吃糯米团子完成签到,获得积分10
5秒前
一瓶水发布了新的文献求助10
6秒前
SYLH应助橙子采纳,获得30
6秒前
ZZDXXX发布了新的文献求助30
7秒前
7秒前
糕糕发布了新的文献求助10
7秒前
7秒前
7秒前
善学以致用应助终澈采纳,获得30
8秒前
巳明完成签到,获得积分10
8秒前
嘻嘻嘻发布了新的文献求助10
8秒前
欢呼妙菱发布了新的文献求助10
9秒前
lee完成签到,获得积分10
9秒前
9秒前
10秒前
诚心尔琴完成签到,获得积分20
10秒前
10秒前
酱子完成签到,获得积分10
11秒前
11秒前
wnx001111完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635