比例(比率)
高分辨率
线性比例尺
计算机科学
计量经济学
数学
遥感
地理
地图学
作者
Han Cai,Chuang Gan,Song Han
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:19
标识
DOI:10.48550/arxiv.2205.14756
摘要
High-resolution dense prediction enables many appealing real-world applications, such as computational photography, autonomous driving, etc. However, the vast computational cost makes deploying state-of-the-art high-resolution dense prediction models on hardware devices difficult. This work presents EfficientViT, a new family of high-resolution vision models with novel multi-scale linear attention. Unlike prior high-resolution dense prediction models that rely on heavy softmax attention, hardware-inefficient large-kernel convolution, or complicated topology structure to obtain good performances, our multi-scale linear attention achieves the global receptive field and multi-scale learning (two desirable features for high-resolution dense prediction) with only lightweight and hardware-efficient operations. As such, EfficientViT delivers remarkable performance gains over previous state-of-the-art models with significant speedup on diverse hardware platforms, including mobile CPU, edge GPU, and cloud GPU. Without performance loss on Cityscapes, our EfficientViT provides up to 13.9$\times$ and 6.2$\times$ GPU latency reduction over SegFormer and SegNeXt, respectively. For super-resolution, EfficientViT delivers up to 6.4x speedup over Restormer while providing 0.11dB gain in PSNR. For Segment Anything, EfficientViT delivers 48.9x higher throughput on A100 GPU while achieving slightly better zero-shot instance segmentation performance on COCO.
科研通智能强力驱动
Strongly Powered by AbleSci AI