SCADA Data-Driven Wind Turbine Main Bearing Fault Prognosis Based on Principal Component Analysis

SCADA系统 涡轮机 风力发电 可靠性工程 主成分分析 断层(地质) 方位(导航) 状态监测 异常检测 计算机科学 数据挖掘 工程类 人工智能 机械工程 地质学 电气工程 地震学
作者
Lorena Campoverde,Christian Tutivén,Yolanda Vidal,Carlos Benaláazar-Parra
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2265 (3): 032107-032107 被引量:1
标识
DOI:10.1088/1742-6596/2265/3/032107
摘要

Abstract Condition monitoring for wind turbines is essential for the further development of wind farms. Currently, many of the works are focused on the installation of new sensors to predict turbine failures, which raises the cost of wind projects. Wind turbines operate in a wide variety of environmental conditions, such as different temperatures and wind speeds that vary throughout the year season. Typically, most or all of the data available in a turbine is healthy data (operation without failure), so data-driven supervised classification methods have data imbalance problems (more data from one class). Also, when historical pre-failure data do not exist, those methods cannot be used. Taking into account the aforementioned difficulties, the stated strategy in this work is based on a principal component analysis anomaly detector for main bearing failure prognosis and its contributions are: i) this methodology is based only on healthy SCADA data, ii) it works under different seasons of the year providing its usefulness, iii) it is based only on external variables and one temperature related to the element under diagnosis, thus avoiding data containing information from other fault types, iv) it accomplishes the main bearing failure prognosis (several months beforehand), and v) the performance of the proposed strategy is validated on a real in production wind turbine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tinydog完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
eve发布了新的文献求助10
2秒前
科研通AI2S应助数据删除采纳,获得10
2秒前
4秒前
远道发布了新的文献求助10
4秒前
4秒前
科研小道应助zhuz采纳,获得10
5秒前
椰子水完成签到,获得积分10
5秒前
土行孙完成签到,获得积分20
5秒前
5秒前
李爱国应助书双采纳,获得10
6秒前
ysyslalala发布了新的文献求助10
6秒前
愤怒的雪巧完成签到,获得积分10
6秒前
一二发布了新的文献求助10
6秒前
6秒前
俭朴绮玉完成签到,获得积分20
6秒前
chenchenchen发布了新的文献求助10
6秒前
7秒前
8秒前
小乐子发布了新的文献求助10
9秒前
10秒前
10秒前
传奇3应助hanyang965采纳,获得10
10秒前
bin发布了新的文献求助10
10秒前
李健应助hanyang965采纳,获得10
10秒前
Akim应助hanyang965采纳,获得10
10秒前
youngga07应助hanyang965采纳,获得10
10秒前
香蕉觅云应助hanyang965采纳,获得10
10秒前
完美世界应助hanyang965采纳,获得10
10秒前
隐形曼青应助hanyang965采纳,获得10
10秒前
ffx完成签到,获得积分10
10秒前
火星上冥茗完成签到,获得积分10
10秒前
han发布了新的文献求助10
10秒前
彩色青亦完成签到,获得积分10
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236