光遗传学
毫秒
材料科学
接口
光子学
光电效应
微加工
光电子学
平面的
计算机科学
纳米技术
制作
神经科学
物理
计算机硬件
医学
替代医学
计算机图形学(图像)
病理
天文
生物
作者
Barbara Spagnolo,Antonio Balena,Rui T. Peixoto,Marco Pisanello,Leonardo Sileo,Marco Bianco,Alessandro Rizzo,Filippo Pisano,Antonio Qualtieri,Dario Domenico Lofrumento,Francesco De Nuccio,John A. Assad,Bernardo L. Sabatini,Massimo De Vittorio,Ferruccio Pisanello
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2022-06-06
卷期号:21 (7): 826-835
被引量:46
标识
DOI:10.1038/s41563-022-01272-8
摘要
Deciphering the neural patterns underlying brain functions is essential to understanding how neurons are organized into networks. This deciphering has been greatly facilitated by optogenetics and its combination with optoelectronic devices to control neural activity with millisecond temporal resolution and cell type specificity. However, targeting small brain volumes causes photoelectric artefacts, in particular when light emission and recording sites are close to each other. We take advantage of the photonic properties of tapered fibres to develop integrated 'fibertrodes' able to optically activate small brain volumes with abated photoelectric noise. Electrodes are positioned very close to light emitting points by non-planar microfabrication, with angled light emission allowing the simultaneous optogenetic manipulation and electrical read-out of one to three neurons, with no photoelectric artefacts, in vivo. The unconventional implementation of two-photon polymerization on the curved taper edge enables the fabrication of recoding sites all around the implant, making fibertrodes a promising complement to planar microimplants.
科研通智能强力驱动
Strongly Powered by AbleSci AI