Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001

卷积神经网络 Sørensen–骰子系数 人工智能 规范化(社会学) 模式识别(心理学) 掷骰子 试验装置 磁共振成像 分割 医学 深度学习 相似性(几何) 数据集 交叉验证 计算机科学 图像分割 统计 放射科 数学 图像(数学) 社会学 人类学
作者
Ying Liang,Karen Lee,Joseph Bovi,Joshua D. Palmer,Paul D. Brown,Vinai Gondi,Wolfgang A. Tomé,Tammie L.S. Benzinger,Minesh P. Mehta,X Allen Li
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:114 (3): 529-536 被引量:5
标识
DOI:10.1016/j.ijrobp.2022.06.081
摘要

Deep learning-based algorithms have been shown to be able to automatically detect and segment brain metastases (BMs) in magnetic resonance imaging, mostly based on single-institutional data sets. This work aimed to investigate the use of deep convolutional neural networks (DCNN) for BM detection and segmentation on a highly heterogeneous multi-institutional data set.A total of 407 patients from 98 institutions were randomly split into 326 patients from 78 institutions for training/validation and 81 patients from 20 institutions for unbiased testing. The data set contained T1-weighted gadolinium and T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging acquired on diverse scanners using different pulse sequences and various acquisition parameters. Several variants of 3-dimensional U-Net based DCNN models were trained and tuned using 5-fold cross validation on the training set. Performances of different models were compared based on Dice similarity coefficient for segmentation and sensitivity and false positive rate (FPR) for detection. The best performing model was evaluated on the test set.A DCNN with an input size of 64 × 64 × 64 and an equal number of 128 kernels for all convolutional layers using instance normalization was identified as the best performing model (Dice similarity coefficient 0.73, sensitivity 0.86, and FPR 1.9) in the 5-fold cross validation experiments. The best performing model demonstrated consistent behavior on the test set (Dice similarity coefficient 0.73, sensitivity 0.91, and FPR 1.7) and successfully detected 7 BMs (out of 327) that were missed during manual delineation. For large BMs with diameters greater than 12 mm, the sensitivity and FPR improved to 0.98 and 0.3, respectively.The DCNN model developed can automatically detect and segment brain metastases with reasonable accuracy, high sensitivity, and low FPR on a multi-institutional data set with nonprespecified and highly variable magnetic resonance imaging sequences. For large BMs, the model achieved clinically relevant results. The model is robust and may be potentially used in real-world situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
2秒前
木头人给step_stone的求助进行了留言
2秒前
魏伯安完成签到,获得积分10
3秒前
朴素尔岚发布了新的文献求助10
4秒前
科研通AI5应助nextconnie采纳,获得10
4秒前
务实的犀牛完成签到,获得积分10
5秒前
5秒前
Blue_Pig发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助橙子fy16_采纳,获得10
7秒前
LGJ完成签到,获得积分10
7秒前
wang完成签到,获得积分10
9秒前
10秒前
11秒前
脑洞疼应助Blue_Pig采纳,获得10
13秒前
14秒前
Akim应助危机的尔蝶采纳,获得10
15秒前
SONG发布了新的文献求助50
15秒前
明理雨筠发布了新的文献求助10
16秒前
小刘一定能读C9博完成签到 ,获得积分10
17秒前
1097完成签到 ,获得积分10
18秒前
缚大哥发布了新的文献求助10
19秒前
Rollei驳回了Hello应助
19秒前
tsntn完成签到,获得积分10
19秒前
wenbo完成签到,获得积分0
19秒前
20秒前
勤奋弋完成签到,获得积分10
23秒前
无名欧文完成签到,获得积分10
24秒前
26秒前
虚心海燕发布了新的文献求助10
26秒前
黄啊涛关注了科研通微信公众号
26秒前
26秒前
JamesPei应助Rainbow采纳,获得10
27秒前
一只科研狗完成签到,获得积分10
27秒前
pp0118完成签到 ,获得积分10
27秒前
余呀余完成签到 ,获得积分10
28秒前
29秒前
善良易文关注了科研通微信公众号
29秒前
29秒前
瑶一瑶发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849