已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Automatic Detection of Brain Metastases in Heterogenous Multi-Institutional Magnetic Resonance Imaging Sets: An Exploratory Analysis of NRG-CC001

卷积神经网络 Sørensen–骰子系数 人工智能 规范化(社会学) 模式识别(心理学) 掷骰子 试验装置 磁共振成像 分割 医学 深度学习 相似性(几何) 数据集 交叉验证 计算机科学 图像分割 统计 放射科 数学 图像(数学) 社会学 人类学
作者
Ying Liang,Karen Lee,Joseph Bovi,Joshua D. Palmer,Paul D. Brown,Vinai Gondi,Wolfgang A. Tomé,Tammie L.S. Benzinger,Minesh P. Mehta,X Allen Li
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:114 (3): 529-536 被引量:5
标识
DOI:10.1016/j.ijrobp.2022.06.081
摘要

Deep learning-based algorithms have been shown to be able to automatically detect and segment brain metastases (BMs) in magnetic resonance imaging, mostly based on single-institutional data sets. This work aimed to investigate the use of deep convolutional neural networks (DCNN) for BM detection and segmentation on a highly heterogeneous multi-institutional data set.A total of 407 patients from 98 institutions were randomly split into 326 patients from 78 institutions for training/validation and 81 patients from 20 institutions for unbiased testing. The data set contained T1-weighted gadolinium and T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging acquired on diverse scanners using different pulse sequences and various acquisition parameters. Several variants of 3-dimensional U-Net based DCNN models were trained and tuned using 5-fold cross validation on the training set. Performances of different models were compared based on Dice similarity coefficient for segmentation and sensitivity and false positive rate (FPR) for detection. The best performing model was evaluated on the test set.A DCNN with an input size of 64 × 64 × 64 and an equal number of 128 kernels for all convolutional layers using instance normalization was identified as the best performing model (Dice similarity coefficient 0.73, sensitivity 0.86, and FPR 1.9) in the 5-fold cross validation experiments. The best performing model demonstrated consistent behavior on the test set (Dice similarity coefficient 0.73, sensitivity 0.91, and FPR 1.7) and successfully detected 7 BMs (out of 327) that were missed during manual delineation. For large BMs with diameters greater than 12 mm, the sensitivity and FPR improved to 0.98 and 0.3, respectively.The DCNN model developed can automatically detect and segment brain metastases with reasonable accuracy, high sensitivity, and low FPR on a multi-institutional data set with nonprespecified and highly variable magnetic resonance imaging sequences. For large BMs, the model achieved clinically relevant results. The model is robust and may be potentially used in real-world situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遗忘完成签到,获得积分10
刚刚
4秒前
4秒前
7秒前
7秒前
跳跃寄风发布了新的文献求助60
9秒前
pluvia完成签到,获得积分10
13秒前
16秒前
geo发布了新的文献求助10
18秒前
19秒前
眼睛大的傲菡完成签到,获得积分10
20秒前
22秒前
柠檬茶完成签到 ,获得积分10
23秒前
研友_VZG7GZ应助小白采纳,获得10
24秒前
26秒前
鱼干星星完成签到 ,获得积分10
26秒前
27秒前
29秒前
31秒前
麻辣厨子发布了新的文献求助10
31秒前
平淡的翅膀完成签到 ,获得积分10
31秒前
寂寞的寄文完成签到 ,获得积分10
33秒前
牟白容发布了新的文献求助10
34秒前
老宇发布了新的文献求助10
37秒前
38秒前
孙文杰完成签到 ,获得积分10
39秒前
城南徐师傅完成签到,获得积分10
40秒前
牟白容完成签到,获得积分10
41秒前
所所应助yema采纳,获得10
41秒前
ppg123应助一只学术老鼠采纳,获得30
41秒前
48秒前
zc完成签到,获得积分10
49秒前
49秒前
pray完成签到 ,获得积分10
49秒前
是你刘大爷完成签到,获得积分10
50秒前
50秒前
51秒前
真实的岩发布了新的文献求助10
53秒前
万能图书馆应助老宇采纳,获得10
53秒前
54秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256707
求助须知:如何正确求助?哪些是违规求助? 2898841
关于积分的说明 8302766
捐赠科研通 2568039
什么是DOI,文献DOI怎么找? 1394855
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630631