土地覆盖
环境科学
大气科学
植被(病理学)
天气研究与预报模式
蒸散量
山脊
自然地理学
土地利用
气候学
地质学
地理
生态学
生物
病理
古生物学
医学
作者
Jiaoyang Yu,Weijian Zhou,Jiarui Wu,Xia Li,Suixin Liu,Ruonan Wang,Lang Liu,Qian Jiang,Wenjian Xiao,Guohui Li
摘要
Abstract Changes in land use and land cover (LULC) influence meteorological fields and biogenic emissions, further affecting the atmospheric chemistry and air quality. Combining the satellite measurements and WRF‐Chem model simulations, we evaluate the impacts of the LULC change between 2001 and 2018 on the summertime ozone (O 3 ) formation in North China Plain and surrounding areas (NCPs). Satellite measurements have revealed that from Taihang to Yanshan Mountain, the fraction of broadleaf and needle forest coverage has increased by 5%–20% and the urban area has increased by up to 25% in the NCP. Additionally, the vegetation density has increased significantly in the NCPs except for urban areas. The LULC change generally enhances biogenic volatile compounds emissions in the NCPs, particularly over Taihang and Yanshan mountain, but the O 3 variation is divergent. The maximum daily 8‐ihr average (MDA8) O 3 concentrations are reduced by 1%–7% over Taihang and Yanshan Mountain because the raised vegetation density increases O 3 dry deposition velocity to accelerate the O 3 loss. The raised vegetation density enhances the evapotranspiration to decrease the near‐surface temperature by 0.1°C–1.5°C, which also generates a divergence in the low‐level atmosphere in the NCPs, causing secondary northerly or easterly winds in the NCP. The O 3 enhancement along the coastal areas of the NCP is attributed to the perturbation of wind fields and photolysis induced by the LULC change. The divergent variation of the MDA8 O 3 concentrations in the NCP is generally caused by the variations of biogenic emissions and photolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI