Prediction Model of Dissolved Gas in Transformer Oil Based on VMD‐SMA‐LSSVM

变压器 支持向量机 情态动词 最小二乘支持向量机 工程类 计算机科学 算法 人工智能 电压 化学 电气工程 高分子化学
作者
Can Ding,Qingchang Ding,Lu Feng,Zhoulin Wang
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
卷期号:17 (10): 1432-1440 被引量:9
标识
DOI:10.1002/tee.23653
摘要

Dissolved gas analysis in oil is an effective method for early fault diagnosis of transformers. Predicting the concentration of future characteristic gases in the transformer can assist operation and maintenance personnel in judging the operation trend of the transformer and ensure stable operation. In order to improve the prediction accuracy of dissolved gas in transformer oil based on a small number of samples, this paper proposes a VMD‐SMA‐LSSVM combined prediction model by using variational modal decomposition and least square support vector machine optimized by slime mold algorithm. First, use variational modal decomposition to decompose the gas signal. For each subsequence, a combined algorithm based on slime mold optimization and least square support vector machine is used to predict separately. Then the prediction results of each sub‐sequence are superimposed and reconstructed to obtain the final prediction value. The research results show that the prediction results obtained based on this method have better prediction effects than other models of machine learning models, other decomposition methods and optimization methods. The proposed method has good fitting characteristics when predicting seven characteristic gases, which verifies the effectiveness. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然水绿发布了新的文献求助10
刚刚
chunning完成签到,获得积分10
1秒前
迅速苡完成签到,获得积分10
2秒前
2秒前
4秒前
思源应助xia采纳,获得10
4秒前
龙大王完成签到 ,获得积分10
6秒前
6秒前
科研通AI6应助不止夏天采纳,获得30
7秒前
7秒前
7秒前
柔弱白羊发布了新的文献求助10
9秒前
传奇3应助Lengbo采纳,获得10
9秒前
温暖的定格完成签到,获得积分10
10秒前
monkey发布了新的文献求助10
10秒前
华国锋应助老实凝蕊采纳,获得20
10秒前
子阅发布了新的文献求助10
11秒前
11秒前
MM完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
wwwjy完成签到 ,获得积分10
12秒前
延陵君应助galvin采纳,获得30
13秒前
realrrr完成签到 ,获得积分10
13秒前
13秒前
Ava应助啦啦啦啦德玛西亚采纳,获得10
14秒前
霸气映之完成签到,获得积分10
14秒前
yurh完成签到,获得积分10
14秒前
完美世界应助monkey采纳,获得10
15秒前
科研通AI6应助tt825采纳,获得10
15秒前
16秒前
叶子发布了新的文献求助20
17秒前
大木头发布了新的文献求助10
18秒前
xiaoya发布了新的文献求助10
18秒前
lxy完成签到,获得积分10
19秒前
19秒前
20秒前
Hello应助shipcap采纳,获得10
20秒前
Ava应助wuxunxun2015采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812