Patient and procedure selection for mechanical thrombectomy: Toward personalized medicine and the role of artificial intelligence

医学 冲程(发动机) 选择(遗传算法) 闭塞 急性中风 重症监护医学 灌注扫描 人工智能 医学物理学 放射科 外科 内科学 灌注 计算机科学 机械工程 组织纤溶酶原激活剂 工程类
作者
Fadi Al Saiegh,Alfredo Múñoz,Lohit Velagapudi,Thana Theofanis,Neil Suryadevara,Priyadarshee Patel,Roland Jabre,Ching‐Jen Chen,Mohamed Shehabeldin,M. Reid Gooch,Pascal Jabbour,Stavropoula Tjoumakaris,Robert H. Rosenwasser,Nabeel Herial
出处
期刊:Journal of Neuroimaging [Wiley]
卷期号:32 (5): 798-807 被引量:7
标识
DOI:10.1111/jon.13003
摘要

Abstract Mechanical thrombectomy (MT) for ischemic stroke due to large vessel occlusion is standard of care. Evidence‐based guidelines on eligibility for MT have been outlined and evidence to extend the treatment benefit to more patients, particularly those at the extreme ends of a stroke clinical severity spectrum, is currently awaited. As patient selection continues to be explored, there is growing focus on procedure selection including the tools and techniques of thrombectomy and associated outcomes. Artificial intelligence (AI) has been instrumental in the area of patient selection for MT with a role in diagnosis and delivery of acute stroke care. Machine learning algorithms have been developed to detect cerebral ischemia and early infarct core, presence of large vessel occlusion, and perfusion deficit in acute ischemic stroke. Several available deep learning AI applications provide ready visualization and interpretation of cervical and cerebral arteries. Further enhancement of AI techniques to potentially include automated vessel probe tools in suspected large vessel occlusions is proposed. Value of AI may be extended to assist in procedure selection including both the tools and technique of thrombectomy. Delivering personalized medicine is the wave of the future and tailoring the MT treatment to a stroke patient is in line with this trend.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助赞zan采纳,获得10
刚刚
wanci应助祖小凝采纳,获得10
刚刚
七七完成签到 ,获得积分10
3秒前
3秒前
小马甲应助康康采纳,获得10
4秒前
JamesPei应助FYm采纳,获得50
6秒前
爆米花应助haoliangshi采纳,获得10
7秒前
慕青应助haoliangshi采纳,获得10
7秒前
烟花应助haoliangshi采纳,获得10
8秒前
欢呼山雁发布了新的文献求助10
8秒前
Lucas应助复杂的白萱采纳,获得10
8秒前
敬业乐群完成签到,获得积分10
9秒前
10秒前
10秒前
hexy629完成签到,获得积分10
10秒前
11秒前
12秒前
wsb76完成签到 ,获得积分10
12秒前
13秒前
搜集达人应助枯草采纳,获得10
13秒前
14秒前
LLL完成签到,获得积分10
15秒前
兜兜发布了新的文献求助10
15秒前
wangqing发布了新的文献求助10
15秒前
sxb10101应助送你一颗流星采纳,获得20
16秒前
16秒前
congcong发布了新的文献求助10
17秒前
康康发布了新的文献求助10
18秒前
野性的觅夏完成签到 ,获得积分10
19秒前
FYm发布了新的文献求助50
19秒前
19秒前
wangqing完成签到,获得积分20
22秒前
医路无悔发布了新的文献求助10
22秒前
Akim应助April采纳,获得10
24秒前
floly发布了新的文献求助20
24秒前
qin202569完成签到,获得积分10
26秒前
轨迹应助curlycai采纳,获得40
26秒前
无花果应助丰富芹菜采纳,获得10
28秒前
Deq完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874805
求助须知:如何正确求助?哪些是违规求助? 6510728
关于积分的说明 15675172
捐赠科研通 4992381
什么是DOI,文献DOI怎么找? 2691139
邀请新用户注册赠送积分活动 1633514
关于科研通互助平台的介绍 1591186