An intelligent neuromarketing system for predicting consumers’ future choice from electroencephalography signals

神经营销 计算机科学 支持向量机 特征选择 脑-机接口 脑电图 预处理器 接口(物质) 人工智能 机器学习 营销 心理学 人机交互 业务 神经科学 最大气泡压力法 气泡 并行计算
作者
Fazla Rabbi Mashrur,Khandoker Mahmudur Rahman,Mohammad Tohidul Islam Miya,Ravi Vaidyanathan,Syed Ferhat Anwar,Farhana Sarker,Khondaker A. Mamun
出处
期刊:Physiology & Behavior [Elsevier]
卷期号:253: 113847-113847 被引量:21
标识
DOI:10.1016/j.physbeh.2022.113847
摘要

Neuromarketing utilizes Brain-Computer Interface (BCI) technologies to provide insight into consumers responses on marketing stimuli. In order to achieve insight information, marketers spend about $400 billion annually on marketing, promotion, and advertisement using traditional marketing research tools. In addition, these tools like personal depth interviews, surveys, focus group discussions, etc. are expensive and frequently criticized for failing to extract actual consumer preferences. Neuromarketing, on the other hand, promises to overcome such constraints. In this work, an EEG-based neuromarketing framework is employed for predicting consumer future choice (affective attitude) while they view E-commerce products. After preprocessing, three types of features, namely, time, frequency, and time-frequency domain features are extracted. Then, wrapper-based Support Vector Machine-Recursive Feature Elimination (SVM-RFE) along with correlation bias reduction is used for feature selection. Lastly, we use SVM for categorizing positive affective attitude and negative affective attitude. Experiments show that the frontal cortex achieves the best accuracy of 98.67±2.98, 98±3.22, and 98.67±3.52 for 5-fold, 10-fold, and leave-one-subject-out (LOSO) respectively. In addition, among all the channels, Fz achieves best accuracy 90±7.81, 90.67±9.53, and 92.67±7.03 for 5-fold, 10-fold, and LOSO respectively. Subsequently, this work opens the door for implementing such a neuromarketing framework using consumer-grade devices in a real-life setting for marketers. As a result, it is evident that EEG-based neuromarketing technologies can assist brands and enterprises in forecasting future consumer preferences accurately. Hence, it will pave the way for the creation of an intelligent marketing assistive system for neuromarketing applications in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Ava应助doudou采纳,获得10
1秒前
1秒前
上官若男应助可颂采纳,获得10
1秒前
2秒前
哎呀妈呀发布了新的文献求助10
2秒前
2秒前
zzx完成签到,获得积分10
3秒前
何何完成签到 ,获得积分10
3秒前
jackhlj完成签到,获得积分10
3秒前
香蕉觅云应助乐小佳采纳,获得10
4秒前
大胆夜绿完成签到,获得积分10
4秒前
青wu完成签到,获得积分10
4秒前
5秒前
竹筏过海应助锦鲤云间月采纳,获得30
5秒前
菠萝吹雪遇见梨花诗完成签到 ,获得积分10
5秒前
杨天水发布了新的文献求助10
6秒前
6秒前
VDC应助梁liang采纳,获得30
6秒前
chen发布了新的文献求助10
6秒前
6秒前
青wu发布了新的文献求助10
7秒前
a龙完成签到,获得积分10
7秒前
眯眯眼的老鼠完成签到,获得积分20
7秒前
无花果应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
wanci应助嗯哼采纳,获得10
8秒前
nanan完成签到,获得积分10
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Hungrylunch应助科研通管家采纳,获得20
8秒前
Cassie应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
暴躁四叔应助科研通管家采纳,获得20
8秒前
Zn应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672