An intelligent neuromarketing system for predicting consumers’ future choice from electroencephalography signals

神经营销 计算机科学 支持向量机 特征选择 脑-机接口 脑电图 预处理器 接口(物质) 人工智能 机器学习 营销 心理学 人机交互 业务 神经科学 最大气泡压力法 气泡 并行计算
作者
Fazla Rabbi Mashrur,Khandoker Mahmudur Rahman,Mohammad Tohidul Islam Miya,Ravi Vaidyanathan,Syed Ferhat Anwar,Farhana Sarker,Khondaker A. Mamun
出处
期刊:Physiology & Behavior [Elsevier]
卷期号:253: 113847-113847 被引量:21
标识
DOI:10.1016/j.physbeh.2022.113847
摘要

Neuromarketing utilizes Brain-Computer Interface (BCI) technologies to provide insight into consumers responses on marketing stimuli. In order to achieve insight information, marketers spend about $400 billion annually on marketing, promotion, and advertisement using traditional marketing research tools. In addition, these tools like personal depth interviews, surveys, focus group discussions, etc. are expensive and frequently criticized for failing to extract actual consumer preferences. Neuromarketing, on the other hand, promises to overcome such constraints. In this work, an EEG-based neuromarketing framework is employed for predicting consumer future choice (affective attitude) while they view E-commerce products. After preprocessing, three types of features, namely, time, frequency, and time-frequency domain features are extracted. Then, wrapper-based Support Vector Machine-Recursive Feature Elimination (SVM-RFE) along with correlation bias reduction is used for feature selection. Lastly, we use SVM for categorizing positive affective attitude and negative affective attitude. Experiments show that the frontal cortex achieves the best accuracy of 98.67±2.98, 98±3.22, and 98.67±3.52 for 5-fold, 10-fold, and leave-one-subject-out (LOSO) respectively. In addition, among all the channels, Fz achieves best accuracy 90±7.81, 90.67±9.53, and 92.67±7.03 for 5-fold, 10-fold, and LOSO respectively. Subsequently, this work opens the door for implementing such a neuromarketing framework using consumer-grade devices in a real-life setting for marketers. As a result, it is evident that EEG-based neuromarketing technologies can assist brands and enterprises in forecasting future consumer preferences accurately. Hence, it will pave the way for the creation of an intelligent marketing assistive system for neuromarketing applications in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助minya采纳,获得30
刚刚
明亮无颜发布了新的文献求助10
1秒前
辰哥完成签到,获得积分20
1秒前
上官若男应助激昂的白凡采纳,获得10
2秒前
mochen0722完成签到,获得积分10
2秒前
2秒前
3秒前
等你下课发布了新的文献求助10
3秒前
...发布了新的文献求助10
3秒前
拼搏问安完成签到,获得积分10
4秒前
jin完成签到,获得积分10
5秒前
5秒前
科学家发布了新的文献求助10
5秒前
chang发布了新的文献求助10
6秒前
6秒前
Lwxbb完成签到,获得积分10
6秒前
彭于晏应助可靠的寒风采纳,获得10
7秒前
7秒前
华仔应助小瓶子采纳,获得10
7秒前
姚晓华完成签到,获得积分10
7秒前
在水一方应助暴躁的问兰采纳,获得10
8秒前
8秒前
8秒前
聪慧百合发布了新的文献求助10
9秒前
呵呵发布了新的文献求助10
9秒前
oneeight完成签到,获得积分10
9秒前
10秒前
wangmumu发布了新的文献求助10
11秒前
顾暖完成签到,获得积分10
11秒前
yangyang完成签到,获得积分10
12秒前
12秒前
淡淡的夜山完成签到,获得积分10
13秒前
英勇的数据线完成签到,获得积分10
13秒前
ddz关闭了ddz文献求助
14秒前
14秒前
yangyang发布了新的文献求助10
15秒前
小吴完成签到,获得积分10
15秒前
16秒前
丸子完成签到,获得积分20
17秒前
可萨利亚完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685