Location-aware neural graph collaborative filtering

协同过滤 计算机科学 图形 透视图(图形) 数据挖掘 人工智能 机器学习 功能(生物学) 情报检索 推荐系统 理论计算机科学 进化生物学 生物
作者
Shengwen Li,Chenpeng Sun,Renyao Chen,Xinchuan Li,Qingzhong Liang,Junfang Gong,Hong Yao
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:36 (8): 1550-1574 被引量:1
标识
DOI:10.1080/13658816.2022.2073594
摘要

Collaborative filtering (CF) is initiated by representing users and items as vectors and seeks to describe the relationship between users and items at a profound level, thus predicting users’ preferred behavior. To address the issue that previous research ignored higher-order geographical interactions hidden in users’ historical behaviors, this paper proposes a location-aware neural graph collaborative filtering model (LA-NGCF), which incorporates location information of items for improving prediction performance. The model characterizes the interactions between items based on spatial decay law from a graph perspective and designs two strategies to capture the interaction effects of users and items considering node heterogeneity. An optimized loss function with spatial distances of items is also developed in the model. Extensive experiments are conducted on three publicly available real-world datasets to examine the effectiveness of our model. Results show that LA-NGCF achieves competitive performances compared with several state-of-the-art models, which suggests that location information of items is beneficial for improving the performance of personalized recommendations. This paper offers an approach to incorporate weighted interactions between items into CF algorithms and enriches the methods of utilizing geographical information for artificial intelligence applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助knell94采纳,获得10
1秒前
科研通AI6应助cwq采纳,获得10
1秒前
浮游应助cwq采纳,获得10
1秒前
Jasper应助cwq采纳,获得10
1秒前
赘婿应助cwq采纳,获得10
1秒前
充电宝应助cwq采纳,获得10
1秒前
所所应助cwq采纳,获得10
1秒前
Jasper应助小康采纳,获得10
1秒前
思源应助cwq采纳,获得10
1秒前
荷包蛋发布了新的文献求助10
2秒前
zrk发布了新的文献求助10
2秒前
sakura发布了新的文献求助10
2秒前
3秒前
3秒前
高高完成签到,获得积分10
3秒前
3秒前
4秒前
踏实汉堡完成签到,获得积分10
4秒前
4秒前
马马发布了新的文献求助10
4秒前
5秒前
5秒前
浮游应助孙朱珠采纳,获得10
5秒前
6秒前
道边的路人甲完成签到,获得积分10
6秒前
窗外的你发布了新的文献求助10
7秒前
耍酷发布了新的文献求助10
7秒前
7秒前
可爱的函函应助荷包蛋采纳,获得10
8秒前
陈陈陈完成签到,获得积分20
8秒前
雷锋发布了新的文献求助10
9秒前
whoKnows应助火火采纳,获得20
9秒前
9秒前
hezaly发布了新的文献求助10
10秒前
斯文败类应助不安的冷荷采纳,获得10
10秒前
我口中说的永远完成签到 ,获得积分10
10秒前
yy发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336