清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Attention-Assisted Adversarial Model for Cerebrovascular Segmentation in 3D TOF-MRA Volumes

分割 人工智能 判别式 计算机科学 模式识别(心理学) 体素 特征(语言学) 基本事实 滤波器(信号处理) 深度学习 计算机视觉 语言学 哲学
作者
Ying Chen,Darui Jin,Bin Guo,Xiangzhi Bai
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3520-3532 被引量:34
标识
DOI:10.1109/tmi.2022.3186731
摘要

Cerebrovascular segmentation in time-of-flight magnetic resonance angiography (TOF-MRA) volumes is essential for a variety of diagnostic and analytical applications. However, accurate cerebrovascular segmentation in 3D TOF-MRA is faced with multiple issues, including vast variations in cerebrovascular morphology and intensity, noisy background, and severe class imbalance between foreground cerebral vessels and background. In this work, a 3D adversarial network model called A-SegAN is proposed to segment cerebral vessels in TOF-MRA volumes. The proposed model is composed of a segmentation network A-SegS to predict segmentation maps, and a critic network A-SegC to discriminate predictions from ground truth. Based on this model, the aforementioned issues are addressed by the prevailing visual attention mechanism. First, A-SegS is incorporated with feature-attention blocks to filter out discriminative feature maps, though the cerebrovascular has varied appearances. Second, a hard-example-attention loss is exploited to boost the training of A-SegS on hard samples. Further, A-SegC is combined with an input-attention layer to attach importance to foreground cerebrovascular class. The proposed methods were evaluated on a self-constructed voxel-wise annotated cerebrovascular TOF-MRA segmentation dataset, and experimental results indicate that A-SegAN achieves competitive or better cerebrovascular segmentation results compared to other deep learning methods, effectively alleviating the above issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
轻松弘文完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
41秒前
悟空完成签到,获得积分10
44秒前
54秒前
54秒前
悟空发布了新的文献求助10
59秒前
Bgsister完成签到,获得积分10
1分钟前
1分钟前
Akim应助yyy采纳,获得10
1分钟前
1分钟前
领导范儿应助休斯顿采纳,获得20
1分钟前
扯扯发布了新的文献求助10
1分钟前
1分钟前
yyy发布了新的文献求助10
1分钟前
2分钟前
merrylake完成签到 ,获得积分10
2分钟前
2分钟前
嘻嘻哈哈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
休斯顿发布了新的文献求助20
2分钟前
Sneijder10发布了新的文献求助10
3分钟前
3分钟前
赘婿应助juejue333采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
CMUSK完成签到 ,获得积分10
3分钟前
科研通AI6.1应助Sneijder10采纳,获得10
3分钟前
Gryff完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
fuyaoye2010发布了新的文献求助10
4分钟前
Ariel完成签到 ,获得积分10
4分钟前
fuyaoye2010完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773003
求助须知:如何正确求助?哪些是违规求助? 5605278
关于积分的说明 15430310
捐赠科研通 4905739
什么是DOI,文献DOI怎么找? 2639693
邀请新用户注册赠送积分活动 1587589
关于科研通互助平台的介绍 1542554