已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention-Assisted Adversarial Model for Cerebrovascular Segmentation in 3D TOF-MRA Volumes

分割 人工智能 判别式 计算机科学 模式识别(心理学) 体素 特征(语言学) 基本事实 滤波器(信号处理) 深度学习 计算机视觉 语言学 哲学
作者
Ying Chen,Darui Jin,Bin Guo,Xiangzhi Bai
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3520-3532 被引量:34
标识
DOI:10.1109/tmi.2022.3186731
摘要

Cerebrovascular segmentation in time-of-flight magnetic resonance angiography (TOF-MRA) volumes is essential for a variety of diagnostic and analytical applications. However, accurate cerebrovascular segmentation in 3D TOF-MRA is faced with multiple issues, including vast variations in cerebrovascular morphology and intensity, noisy background, and severe class imbalance between foreground cerebral vessels and background. In this work, a 3D adversarial network model called A-SegAN is proposed to segment cerebral vessels in TOF-MRA volumes. The proposed model is composed of a segmentation network A-SegS to predict segmentation maps, and a critic network A-SegC to discriminate predictions from ground truth. Based on this model, the aforementioned issues are addressed by the prevailing visual attention mechanism. First, A-SegS is incorporated with feature-attention blocks to filter out discriminative feature maps, though the cerebrovascular has varied appearances. Second, a hard-example-attention loss is exploited to boost the training of A-SegS on hard samples. Further, A-SegC is combined with an input-attention layer to attach importance to foreground cerebrovascular class. The proposed methods were evaluated on a self-constructed voxel-wise annotated cerebrovascular TOF-MRA segmentation dataset, and experimental results indicate that A-SegAN achieves competitive or better cerebrovascular segmentation results compared to other deep learning methods, effectively alleviating the above issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinn发布了新的文献求助30
1秒前
威武鸵鸟完成签到,获得积分10
1秒前
sunrise完成签到,获得积分10
2秒前
北觅完成签到 ,获得积分10
2秒前
3秒前
pop完成签到,获得积分10
3秒前
快乐排骨汤完成签到 ,获得积分10
3秒前
熊有鹏发布了新的文献求助10
4秒前
隐形曼青应助bing采纳,获得10
4秒前
ludwig完成签到,获得积分10
4秒前
4秒前
boyis完成签到,获得积分10
5秒前
YamDaamCaa应助东东采纳,获得30
5秒前
就看最后一篇完成签到 ,获得积分10
5秒前
我是老大应助TMUEH_FCL采纳,获得30
6秒前
梁间容完成签到 ,获得积分10
6秒前
FashionBoy应助溶胶采纳,获得10
7秒前
FashionBoy应助yitongyao采纳,获得10
7秒前
激动的访蕊完成签到,获得积分10
8秒前
9秒前
聪慧不二完成签到 ,获得积分10
9秒前
领导范儿应助熊有鹏采纳,获得10
9秒前
SCIfafafafa发布了新的文献求助10
9秒前
严明完成签到,获得积分10
11秒前
严明完成签到,获得积分10
11秒前
小小鱼完成签到 ,获得积分10
12秒前
柏林寒冬完成签到,获得积分10
13秒前
义气幼珊完成签到 ,获得积分10
15秒前
SCIfafafafa完成签到,获得积分20
18秒前
默笙完成签到 ,获得积分10
20秒前
脑洞疼应助噔噔噔采纳,获得10
20秒前
21秒前
烟花应助科研通管家采纳,获得10
21秒前
1111完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
爆米花应助科研通管家采纳,获得30
21秒前
周周粥完成签到 ,获得积分10
21秒前
科目三应助SCIfafafafa采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968146
求助须知:如何正确求助?哪些是违规求助? 3513140
关于积分的说明 11166611
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794192
邀请新用户注册赠送积分活动 874904
科研通“疑难数据库(出版商)”最低求助积分说明 804629